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How to use these Notes

These notes are meant to provide full explanations of all material necessary to
do well in this course. They are intended to be a self-contained pack — but for
maximum benefit should be read alongside the slides, and alongside the sug-
gested extra papers, from the COMP61011 website.

Please take note that to achieve the highest grades on this module, you should
be thoroughly understanding everything in these notes, reading all the sug-
gested papers, and doing some additional ‘googling’ of your own to find out
other details. Although your January exam will only be on the material ex-
plicitly pointed to by the website/notes/slides, your mini-project in weeks 4-6
accounts for a significant amount of the overall grade (see website) so has scope
for reading outside the supplied syllabus.

The website is: http://studentnet.cs.manchester.ac.uk/pgt/COMP61011/

Enjoy the course!
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Quotes from previous students

Anon

Computer Science is a hard subject.
Machine Learning is one of the harder bits of CS.

Machine Learning is one of those topics in CS where it’s very easy
to convince yourself you understand what the algorithm is doing, but
in fact you don’t.



Chapter 1

Introduction

Welcome to the class! When you opted for “Foundations of Machine Learning”,
what did you think it was about? Did it conjure up scenes from sci-fi movies,
robots, and conscious computers? Well... I'm sorry to disappoint you, but that’s
not this class. Let’s make it clear what we are studying, and why it’s just as
interesting, if not more so, than those sci-fi visions of the future.

1.1 The Role of ML within AI

You'’re a human being (I assume), so you can do many things. You can per-
ceive the world around you by seeing, and listening. You can communicate by
speaking and gesturing. You can move around, navigating your environ-
ment. You can understand and reason about abstract concepts such as jokes,
politics, and prime numbers. And, you can learn from your experiences. Each
one of these things is an ability that we associate with intelligence. Reproducing
these abilities on a computer is known as artificial intelligence. For each of these
abilities, there is an entire research field, with thousands of scientists working
on the problem of getting computers to do it. Current popular sub-fields of
artificial intelligence can be seen in the context of these human abilities:

Human ability Name of A.I. Research Field
Seeing Computer vision

Talking Speech synthesis

Listening Speech recognition
Understanding language Natural Language Processing
Reasoning Automated Reasoning
Consciousness Philosophy / Cognitive Science
Walking / moving around | Robotics

Learning Machine Learning

This is not an exhaustive taxonomy — there are many other fields of A.I. which
do not map so easily one-to-one with human abilities. In any case, the point

ARTIFICIAL
INTELLIGENCE
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to remember is that, each of these problems is so hard individually, that it has
spawned careers for thousands upon thousands of scientists. In fact, behind
each of these sub-fields are hundreds of sub-topics, such that most scientists can
only learn maybe 10-20% of them in his/her whole career.

The abilities in the table are listed in no particular order, but notice that
the last of these is machine learning. This means programming a computer
so that it can learn from experience. When I say ‘learn’, please don’t read too
much into the word — it means something very specific. Learning, as we will
use the word, is not something innate to biological intelligence, or even biolog-
ical life. Though biology has inspired some artificial intelligence researchers,
most algorithms in Machine Learning are purely mathematical with no specific
derivation from biological intelligence. As such, the ‘learning’ algorithms we will
meet are not magic, they are just computer programs, computational processes,
like any other you have seen in the past!. So, when I say ‘learn’ what I really
mean is ‘adaptation in response to observed data’. The adaptation is entirely
formalised, written as equations, to ‘update’ the state of the system from one
timestep to the next, in response to data that we observe.

We could spend weeks (or years) debating this issue, including meaning of
the word ‘intelligence’ — in fact some researchers spend their entire careers
pursuing this line of philosophical work. Machine Learning, and many other
fields in the table above, take more of an engineering point of view, in that
we want to build computer systems to exhibit these behaviours, whether or
not they are true components of human intelligence. So, let’s get down to the
details, and look at the ‘fuel’ which all machine learning algorithms need: data.

1.2 Machine Learning needs Data

All machine learning algorithms require one thing above all: data. Without
data, there is nothing to learn from. In the same way, humans cannot learn
without data — when you learn a new skill, your ‘data’ comes from observing
the world around you. Luckily (for machine learning enthusiasts) the modern
world is drowning in data. Amazon processes over 250,000 book sales per day.
There are over 50 million credit card transactions per day in the USA alone. The
UPS delivery company routes over 1,000,000 packages every night, generating
hundreds of thousands of statistics on delivery times/delays etc.

Machine Learning is the study of algorithms and data structures that enable
us to extract meaning from this mass of data. First let us consider exactly what
we mean by ‘data’. It is convenient to regard data as having two aspects: one is
the objects we wish to study, and the other is the characteristics of those objects.
For example, we might study historical credit card transactions: the ‘objects’
might be the individual transactions, and the characteristics are measurements

IBeware the person who says “I want to use machine learning to solve problem X”. Very
often, that just means they haven’t thought hard enough about the problem. Try substituting
any other field of computer science in there - “I want to use databases to solve X”, doesn’t
sound so magic now, but it’s an equivalent misnomer.
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we recorded, such as the time/place/amount of the transaction, or whether it
turned out to be a fraudulent transaction. In technical terms, the objects are
known as examples, and the characteristics are known as features. The features
could be continuous variables, such as time/amounts, or binary/categorical val-
ues, or a mixture of both. Let’s take an example of some data that a doctor
may encounter in a healthcare situation: the examples would be patients that
the doctor had seen over a period of time, and the features would be various
measurements taken on those patients. The set of measurements might be:

Height (cm)

Weight (kg)

Systolic blood pressure (mmHg)
Diastolic blood pressure (mmHg)
Blood sugar after meal (mM)
Diagnosed with diabetes? (1/0)

These would be taken from different patients, and arranged in a table:

T ‘LEQ ‘LES ‘$4‘$5

|
187 [ 80 | 120 [ 30 | 4.5

160 | 70 119 | 36 | 5.6
150 | 80 185 | 60 | 8.8
192 | 92 140 | 50 | 6.8
168 | 110 | 155 | 45 | 7.8

—= == O Ol

Here each row is a person (one of our examples), and each column is a mea-
surement (our features). Notice that we’'ve given them shorthand names, so
is the height, x5 is the weight, x3 is the systolic blood pressure, etc. Notice
in particular that we’ve given the final measurement, the diabetes diagnosis, a
different notation, y — this is what we call the label for each example. In this
case it is binary, but in general it could be continuous or categorical. Now, given
our data, we will consider two things we might want to do with it.

Prediction : We may wish to use data to predict something about some future
as yet unseen data. For example, we might use this healthcare data to
predict the labels (i.e. diagnosis) for new patients, advising them if they
are at risk of developing diabetes. The key point here is the new patients
have never been seen before — so the learning system needs to be able to
pick up on general patterns in the x data we provide, that are predictive
of the disease y. These are known as supervised learning algorithms, since
the “ground truth” labels are provided for each patient.

Description : Some data is too complex to understand, in which case we may
wish to see it described or visualised in a different way. For example, by
visualising health data we might find that there are in fact sub-types of a
disease — e.g. type-I and type-II diabetes — which need to be treated in
different ways. These are known as unsupervised learning algorithms, as
they are generally applied when we do not know the ground truth label y
for each patient, and just wish to analyse patterns in the x data.

EXAMPLES
FEATURES

LABEL

SUPERVISED
LEARNING

UNSUPERVISED
LEARNING
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The vast majority of this module will be spent on prediction, that is, supervised
algorithms. There also exist so-called unsupervised algorithms — though we
will not cover them in this module. This is not because supervised algorithms
are more prevalent, or ‘better’, it is simply a matter of time — in this unit we
have 5 weeks of taught material, and will cover the supervised methods in a lot
of depth. For those of you taking COMP61021 “Modelling and Visualization of
High Dimensional Data”, you will see unsupervised methods there, or you may
choose to study them for the project part of this module.

1.3 ML Algorithms build a ‘model’ of the Data

So given all that data, what do we do with it? Supervised Learning is con-
cerned with creating and using mathematical data structures. The structures
we use are known as models, and are expressed in various forms, e.g. trees,
graphs, algebraic equations, and probability distributions. The emphasis is on
constructing these models automatically from the data—where this automatic
construction is referred to as learning. The way in which a model is used is
illustrated in the figure below. Remembering the x (data) and y (labels) from
the previous section, we call this the ‘training’ data, which is used to construct a
model. Once the model is constructed, it is evaluated by testing its predictions
on unseen data, which we call ‘testing’ data.

“Training” Data

wrme >

TRAINING ==

Learning
Algorithm

Tacting” Predicted Labels

Testing” Data 3 > |

(no labels) Model
1 1
\ J

I
TESTING
Figure 1.1: The basic supervised learning pipeline — the “training” stage:

use data to build a model, then the “testing” stage: evaluating the model on
unseen testing data.

This brings us to a very important aspect of machine learning, one that we
will see again and again through the course. We do not necessarily want the
model to predict the labels on the training data perfectly. This may seem non-
intuitive, but what we ultimately want is for the model to make good predictions
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on the testing data. If the model learns too well on the training data, such that
it can predict very well there, but cannot predict well on testing data, then it
is said to have over-fitted. You can think about this like a student (the model)
revising for an exam (the testing data). You might get past papers to practice
on, but if you just memorise the papers, and memorise lecture notes, you will
not necessarily have learnt the general skills you need. We’ll see this in more
detail in the coming chapters.

1.4 Machine Learning Algorithms make mistakes

An important difference between machine learning (ML) and other types of
algorithms in computer science is that ML algorithms can make mistakes. Unlike
for example, sorting algorithms, which guarantee to return the list of values you
provide in order, an ML algorithm, which tries to predict the answer to questions
you pose to it, does not always get it correct. Possibly even more distressing,
you may feel, is the fact that some ML algorithms are stochastic, in that they
rely on a random initialisation of some parameters, and randomly make mistakes
on different data points depending on this initialisation.

You may think of this as a major disadvantage. However, consider the com-
plexity of the task you are asking of the computer — even further, consider if a
human could even distinguish all cases correctly. Could a doctor perfectly diag-
nose everyone who came into the surgery? Probably not, as there are always
exceptions and outliers. Due to this, we need formalised ways of measuring
performance of our different algorithms, to determine which is the ‘best’. I put
best in quotes there as it is a ambiguous word — ‘best’ can mean lots of things,
for example an algorithm can be more accurate, or faster at learning, or takes
up less memory, etc. We'll see that there are several measurements to formally
evaluate the performance of our algorithms in these different ways.

1.5 Mathematics is Fundamental to ML

The language in which machine learning algorithms are phrased is mathematics,
specifically, we will draw on many aspects of statistics, a bit of calculus, and lots
of linear algebra, and probability theory. There is no escaping this fact.
You may well take the course and try to avoid the mathematical aspects, but I
promise you that you’ll likely emerge with a less than satisfactory grade, likely
in the bottom quarter of this class. That is the reality. If you don’t know that
log(ab) = loga + logb, or the expression ), w;x; > t is alien and scares you,
then maybe you should seriously reconsider taking this course. I'm not trying
to scare you, or to put you off if you are a determined person. But you need to
be aware of what this subject is about. Remember:

Computer Science is a hard subject.
Machine Learning is one of the harder bits of CS.

OVERFITTING
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Be sure to look through the maths primer on the COMP61011 website, to see
the type of maths we will be making use of. You can also obviously start reading
ahead in these notes, to see what it’s like.

1.6 Summary and Overview of the Course

So, we’ve established what this module is not about. It is not robotics, neuro-
science, consciousness studies, or computer vision. However, that is not to say
that Machine Learning (ML) does not slip into other fields in some way. The
various sub-fields of A.I. do overlap quite a bit. For example, much of modern
computer vision draws heavily on ideas that originally developed in the ML
field, and there are fields such as “Text Mining” that do not correspond to a
single human ability, yet draw extensively on many aspects of ML.

ML is also sometimes equated with the field of data mining. The distinction
between these fields is subtle, and some would argue there is no difference at
all, or that Data Mining is a subfield of ML. It is true that Data Mining is
mostly concerned with analysis of real-world industry data, whereas Machine
Learning has many other aspects, incorporating tools from such diverse areas as
theoretical computer science, control theory, and neuroscience. Data Mining ar-
guably uses the tools produced by machine learning, and possibly extends them
to issues one would only encounter in particular industries. For the mostpart,
it’s just terminology, and not really worth worrying about.

In this module we will focus on the core ideas of ML, while later modules
you may encounter will specialise them so you can study vision, text, speech
processing, constraints in industrial settings, etc, etc.

In week 1, we will cover the basics of the supervised learning pipeline. The
setup of this is common across all methods we will cover in the coming weeks,
and you should know it well. In week 2, we will delve further into experimental
methods, and geometric models. Weeks 3/4 will focus on models derived from
probabilities, and finally in week 5 we will wrap up with some guest lectures and
advanced topics that you may be able to use in your mini-projects.



Chapter 2

Geometric Models I: Linear Models

My HOBBY: EXTRAPOLATING

AS You CAN SEE, BY LATE
NEXT MONTH YOU'LL RAVE
OVER FOUR DOZEN HUSBANDS.
BETTERGETA
BULK RATE ON
WEDDING CAKE.




LINEAR MODEL

8 CHAPTER 2. GEOMETRIC MODELS I: LINEAR MODELS

2.1 Building & Evaluating a ‘model’ of the data

Machine Learning is concerned with creating and using mathematical data
structures that allow us to make predictions about the data. The data struc-
tures we use (known as “models”) are expressed in various forms, e.g. trees,
graphs, algebraic equations, and probability distributions. The empha-
sis is on constructing these models automatically from the data—this automatic
construction is referred to as learning. We will now meet the first of these, which
are all known as linear models. This, like most of machine learning, will in-
volve some mathematics, specifically this section will require some geometry
and a little calculus, so you may like to revise some old textbooks. Before we
get into that, we need a problem to solve with our learning algorithms.

2.1.1 The Problem to Solve

Imagine you are working for a local rugby club. Your task is to make a computer
system that can distinguish between rugby players, and the ballet dancers who
work next door, occasionally trying to sneak into the rugby club changing rooms.
One option here is to meticulously code an algorithm that could in some way
distinguish between these two types of people. However, this might not be
stable to small changes in the people, such as if a rugby player grows a beard,
or the ballet dancer gains some weight. Instead, we will have a machine learning
algorithm learn the general patterns that distinguish these people, from a set of
examples that we will provide to it. Your employer provides a datafile, a sample
of which is shown in below.

190/
T, T2, y (label) 180 °
98.79, 157.59, 1 N °
93.64, 138.79, 1 § 1701 *
£ X
42.89, 171.89, : 160} ° X
2 150
87.91, 142.65, 1 »& 140] *x
97.92, 162.12, 1
47.63, 182.26, 0 130
92.72, 154.50, 1 120 : : : : ‘
20 40 100 120

60 80
X, (weight in kg)

Figure 2.1: The rugby-ballet problem. The raw data is on the left, showing the
two features x1: the person’s weight in kilograms, and xo: the person’s height
in centimetres. It also shows the label y, which here is either 1 or 0. The
scatterplot on the right shows us a slightly nicer way to visualise the data. The
rugby players (y = 1) are red crosses. The ballet dancers (y =0) are blue dots.

The data on the left is clearly in a ‘spreadsheet’ form, and a little difficult to
understand, but we’ve scatter plotted it on the right, to see it in a different way.
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Clearly, we can scatterplot data like this only if we have just two features. All

of the algorithms we cover will work in general for any number of features, but MULTIPLE

visualising the behaviour in 2-d is useful to learn the basics. FEATURES
We must always keep in mind that this data is just a small fraction of what

our finished model may see when it is eventually “deployed in the field” and

tested for real. The supervised learning pipeline is shown in figure 2.2, showing

how we make use of this data. We have access to this, and only this, and then

we must make a prediction on a new datapoint, which here we will pretend is

x = {85.2,160.3}.

X1 X2 Label
98.7 1576 1
936 1388 1
428 1719 0
879 142.7 1
979 162.1 1
476 1823 0
928 1545 1
Learning
Algorithm
Predicted Label
X1 X Model —_— 1
85.2,160.3
Figure 2.2: Reminder of the basic supervised learning pipeline — using train-

ing data to build a model, then evaluating it on unseen testing data. On this
course you will learn several different model types, and the appropriate learning
algorithm for each.

2.1.2 The Simplest Linear Model: The Decision Stump

Given a visualization of the rugby-ballet data in figure 2.1, your own well-
engineered learning algorithm (i.e. that thing between your ears) can spot a
pattern. We can write a very simple program that will solve the problem,

if 1 > 70 then =1 else y=0 (2.1)

where we use the notation ¢ to indicate a prediction of the variable y. If we
imagine a function f(x) = (x1 —t), with ¢ = 70, then an equivalent rule is:

if f(x) >0 then y=1 else §=0 (2.2)

The point of writing this in the second way is that the function f(x) is now
self-contained, and we can now call it a model, in that it has a parameter, t. PARAMETERS
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Other models will have many more parameters. This model is called a decision
stump, where the threshold required to switch the decision from 0 to 1 is the
parameter ¢t — the point at which it switches is called the decision boundary.
This model has a linear decision boundary.

190
180
170
160 °
150
;;‘ 140

130

height in cm)

%% 40 0 '80 100 120

X (weight in kg)
Figure 2.3: The rugby-ballet data, with the decision boundary for the “decision
stump” model (where the threshold parameter t = 70).

Note that a different parameter setting, e.g. ¢ = 90 would have yielded a dif-
ferent decision boundary, and hence would have classified our testing datapoint
x = {85.2,160.3} as a 0 instead of a 1.

So, our model is just the function f(x) = (x1 —t), and the decision rule for
the model is a simple “if-then” rule. When the parameter is set correctly, the
model f(x) should give good predictions. The only parameter to set is the ¢, so
we do a simple line-search to find the optimal value, measuring the number of
errors made on the data for each possible threshold. Finding the best parameter
setting is what we refer to as “learning”.

Learning Algorithm for Decision Stump: Line search

stepsize < 1, minErr < 99999
for t = min(z) to max(z) by stepsize do
numErrs = numberO f Errors(t)
if numErrs < minErr then
minErr < numErrs
thest <
end if
end for
return tyes:

Here, note that we have assumed a function numberO f Errors(t) which evalu-
ates the decision rule eq(2.2) with threshold ¢ on the data, and informs us how
many errors were made. Notice also that we’'ve had to assume a stepsize, the
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steps by which we search in the space of possible thresholds. This algorithm
with stepsize = 1 will perfectly solve the rugby-ballet problem, but on a com-
plex dataset, such as that shown below, the wrong choice of step size could
easily overshoot the best parameter value.

S
3 ¥ s "
o © O
_d O@

Figure 2.4: A non-linearly separable problem.

This is called a non-linearly separable problem. The original rugby-ballet
data in figure 2.1 allows us to fit a linear model (i.e. draw a linear decision
boundary) and perfectly separate the classes, thus it is called a linearly separable
problem. Whereas we cannot fit a linear decision boundary perfectly between
the two classes in Figure 2.4. This data also helps us illustrate the concept of
an error landscape. Below we have a plot (as we vary t) of the number of errors
that the decision stump, eq.(2.2) makes.

S
o

o
s
o

o
IS

o
@
5}

S
©
T

o
i
o

o
)
T

015

percentage of errors in training data

-2 -1 0 +1 42
parameter value (threshold on x1)

Figure 2.5: The error landscape for the non-linearly separable data, varying ¢.

At different possible threshold values, the stump makes different numbers of
errors. When ¢ = —2, most points are predicted to be y = 1, therefore lots of
errors are made. The minimum error is at about t = 0.2, or t = 0.8. These both
cause about 8% error, so in this case there is no reason to pick one over the
other, so we could just pick one arbitrarily — though more sophisticated solutions

NONLINEARLY
SEPARABLE

LINEARLY
SEPARABLE

ERROR
LANDSCAPE
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will emerge in later chapters. The learning algorithm returns a setting for the
parameter, tpest, which we then use in eq(2.2), and this is our final model.

Notice also that if we had chosen a step size of 1, we may well have overshot
the minimum, so the more fine grained the search, the better, but of course
this makes it more computationally intensive. You’ll see that most learning
algorithms have these sort of trade-offs — lower error comes at the price of
more computation.

SELF-TEST

% W Using what you know from the landscape, draw an
byt g
% optimal stump decision boundary for x; into Fig 2.4.
4\,,

2.1.3 Evaluating Models: Training vs. Testing

This is possibly the most important topic in the entire course. We
have so far not considered what will happen to our model when it is deployed
out in the real world. We will have “trained” the model, on the data that we
have, but then it will encounter new situations, some that it has never seen,
like perhaps a 120kg ballet dancer. You can think of this somewhat like your
driving lessons, versus your driving test. Your model is effectively in lessons
while you are training it—hence the name “supervised learning”. Then, you
deploy it to the real world and it is tested.

’ if f(x) >0 then §g=1 else =0

Your driving test would not be on the exact same roads, in the exact same
car, in the exact same weather conditions, that you had your lessons. In your
driving test, you would have to show you can generalise the skills you have
learnt. In machine learning, equivalently, models have to be able to show good
generalisation.

The critical point is, we have only one set of data! So, how can we possibly
know what will come when the model is deployed? The answer is that we split
the data up, into training and testing data. By this I mean we take a random
half of the examples as training data, and the other half as testing data. When
we learn the parameters of our model, we only allow it to see the training data.
Then, we fix the parameters, and see how well it does on the testing data.
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Data

w —® T

i Training Data

Testing Data

Figure 2.6: Splitting data into training and testing sets.

If we were to just learn the model (train) on the entire dataset, we might
just learn the characteristics of this dataset, effectively fine-tuning our model so
it would just work well here, as opposed to working well out in the real world as
well. This fine-tuning is known in technical terms as overfitting, and is obviously OVERFITTING
something we wish to avoid.

With this in mind, we can present pseudo-code for a good learning protocol:

1. Split the data randomly in half, into training and testing sets.
2. Train a model on the training set.
3. Test this model on the testing set and record the error rate.

4. Repeat this procedure many times, and calculate the average error rate.

Notice that we repeated this many times, splitting the data randomly. On
each split, the model was trained, and the test set it was evaluated on was
kind of like a ‘mock’ exam. The final ‘score’ that we assign to the model is
the average test error rate over the several repeats. We could also report the
standard deviation over those repeats, which would tell us more about how our
model is sensitive to the random changes in the data.

This is the simplest protocol for supervised learning, and it in fact does have
limitations, that we have not yet made clear. We will cover this in much more
detail in the Experimental Methods chapter. For now, we will move on to look
at a couple more interesting models, still linear, but able to cope with slightly
more complex data.
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2.2 More Linear Models

The decision stump model has a clear limitation — it works only on a single
feature. If the data in Figure 2.4 was rotated 45 degrees, the model would fail
miserably to separate the classes. The next model we see will deal with this
limitation.

2.2.1 The Perceptron

At the moment, the boundary is only taking into account one of the features.
To represent a decision boundary for an arbitrary number of features, we use
the discriminant function. In n dimensions, the discriminant function is:

d
flx) = ijxj —t (2.3)

We are also going to start using a different notation for compactness. The
expression 2?21 wjx; can also be written in matrix notation, as wTx. If you
find this confusing, please refer to a textbook on linear algebra, or some online
tutorials on vector mathematics.

The discriminant function describes the equation of a plane. A plane is
the mathematical generalisation of a line, i.e. a line is a 1-dimensional ob-
ject, whereas a plane can be of arbitrary dimension, in this case we will say
d-dimensional. The discriminant function draws a boundary of dimension d — 1,
that is, if d = 2, it draws a 1-dimensional boundary, i.e. a line. If d = 3, it
draws a 2-dimensional boundary, i.e. a plane.

Figure 2.7: Boundaries drawn by the linear model in eq(2.3). LEFT: Data
where d = 2, and since the discriminant is d — 1 dimensional, the boundary is a
1-d line. RIGHT: Data where d = 3, so the discriminant is a 2-d plane.

Let’s take a brief diversion to examine the relationship between this “dis-
criminant function” and the equation of a line which, as you will remember from
school' takes the form y = mx + c. For any point x that sits on the plane in

LIf you are from the UK school system. Otherwise you may know it as a different notation,
for example in Brazil: y = ax + b, in Italy: y = ma + ¢, or in Greek education: ¥ = ax + 8.
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d-dimensional space, we have

d
fx) = wix—t ija:j—t =0 (2.4)
j=1

In 2-dimensions:

f(x) =wiz1 +waza —t = 0 (2.5)
w t
71.1'1 + Ty = — (26)
w2 w2
w t
To = —7131‘1 4+ — (27)
w2 w2

This now follows the geometry of the line, y = ma + ¢, with

w1 t
m= (-2, = (2.8)
where m is the gradient of the line (decision boundary), and c is its intercept
on the vertical axis where z; = 0. You can now see that the values of the
parameters w and ¢t have the effect of moving the decision boundary around in
the space.
The decision boundary is always oriented orthogonally (90°) to the parameter
vector. The boundary in the image below shows this, the arrow represents the
parameter vector, which here is w = {—4.11,-3.17}, and ¢ = 7.8452.

Error:0/5, w =[-4.11 -3.17], 6 = 7.8452
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In 2-d, the discriminant function is a line, in higher dimensions, it becomes
a hyper-plane. Remember, for a point {z1,...,z4} on the plane, f(x) = 0. On
one side of the plane, f(x) > 0, on the other, f(x) < 0. The weight vector
always points toward the side where f(x) > 0.

Once again, this gives us a very easy way to write a simple computer program
that will solve our problem:

if f(x) >0 then =1 else §=0 (2.9)

This is the Perceptron decision rule. Notice here that this is identical to the
rule for the decision stump, but the model is different. For the decision stump,
the model was f(x) = (1 — t), whereas here, the model is f(x) = w’x — t.

All we have to do now is find the right values of w and ¢, that position the
boundary in the right place so as to separate the two clusters of points as well
as possible — when this is the case, it will be classifying more points correctly.

The way to do this is the Perceptron Learning Algorithm. We know
that the position of the decision boundary is controlled by the parameters w
and t, so we update these, trying to find the configuration that will classify our
data well. The algorithm is iterative, in the sense that it makes multiple passes
through the data, which we call epochs, but in other texts you might also hear
this referred to as ‘iterations’. The algorithm proceeds as follows.

Perceptron Learning Algorithm

t + rand(), w + randvector()
a<+ 0.1 // alpha is our stepsize
repeat
for each training example (x,y) do
for each parameter j do
wj =wj —ax(§—y) Xz
end for
t=t+ax(§—y)
end for
until changes to parameters are zero

The algorithm proceeds by updating the parameters by a small step size «,
examining each training datapoint in turn, and updating the parameters for
each. The parameter update rule is w; = w; — a x (§ — y) X x;, where 7 is the
output of the decision rule eq(2.9). Since both y and § are either 0/1, we can
examine what the possible updates to the parameters for each datapoint, in the
table below.
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Predicted label § True label y ‘ Parameter update Aw

0 0 0

0 1 ax
1 0 —az
1 1 0

From this table we can see that if the predicted label is equal to the true label,
i.e. the perceptron rule gets the datapoint correct, then there is no update. If
g = 1 but in fact the true label is y = 0, then w is decreased by —az. This
has the effect of reducing the sum ), w;z;, bringing it potentially under the
threshold ¢, so in future the prediction might be corrected to §§ = 0. The reverse
is true if § = 0 and y = 1, where the parameters are increased. Notice that the
threshold parameter ¢ is also being updated in a similar manner.

We can also see that with a larger « stepsize, the algorithm will make bigger
updates. This step size is called the learning rate. Don’t be duped into thinking LEARNING RATE
bigger is better! In fact in the vast majority of cases, 0.1 does the job just fine.

We are looking at this algorithm more for historical interest, and as a
stepping-stone, than for practical use. In practice, it is severely limited, and
can only solve linearly separable problems — remind yourself of the definition
of this on page 11.

However, it is guaranteed to solve the problem if it is linearly separable. The
Perceptron Convergence Theorem states this formally:

Perceptron Convergence Theorem

If a dataset is linearly separable, the perceptron learning algorithm
will converge to perfect classification within o finite number of
training steps. If the data is linearly inseparable, the algorithm
will diverge and oscillate forever.

In the next section we will see an extension of this model, which solves some of
its problems, in particular, the next model will not oscillate if the problem is
inseparable, but instead will find a reasonable parameter setting and terminate.
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2.2.2 Logistic Regression

Remember we have a linear model f(x) = w’x — ¢, and that the value of f(x)
for any particular x can vary in (—oo,+00). This is in fact a bit strange. We
know that our model is just trying to make a decision between two possible
classes, so it doesn’t really need to have the full range to plus/minus infinity.
Furthermore, consider that for a particular x, we might have f(x) > 0, indicat-
ing that the model thinks the datapoint is class 1, but how confident can we be
in this decision? What is the probability of class 1 versus class 07 This question
is answered by a Logistic Regression model.

We redefine our model to have the output,

_ 1
I )

f(x) (2.10)

This is called the sigmoid function. Notice that all this does is take our original
model, and pass it through the sigmoid. The output is a number in the range
[0, 1], and the function looks like an ‘S’ , shown in figure 2.8.

1 } —Sigmoid activationfunction{

Figure 2.8: Sigmoid function, also known as logistic curve. The output (vertical
azis) is a value in the range [0,1], hence we can interpret it as a probability.
The input to the function (horizontal axis) is our original linear model wlx —t.

Since this is a value between 0 and 1, we treat it as a probability, and there-
fore our model is an estimate of the quantity p(y = 1|x), which is read “the
conditional probability of y = 1 , given the value of x”. As a result of this,
our decision rule must change. The previous decision rule, eq.(2.9), used an
inequality about 0, but this new model is always greater than zero. Since it’s a
probability, the new rule just checks whether it is larger than 0.5:

if f(x) > 0.5 then §=1 else §=0 (2.11)
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SELF-TEST
L\_L:"l‘;, 3 W Imagine w = {2,3}, x = {3,1}, and ¢ = 7. What is

the value of the logistic regression model, i.e. what
é ) is f(x)? What about if we = —3? What is the
[

" predicted label g in each case?

We will now derive a learning algorithm for this new model. Remember,
the algorithms we will study in this course are, at their heart, just computer
programs. They are not intelligent in the general sense of the word, and they
cannot simply learn as a human can. If we are to have an algorithm that can
‘learn’, then we need to set a precise objective for the algorithm to pursue.
These are called loss functions. The loss is the ‘cost’ incurred by a model for LOSS FUNCTION
any given prediction that it makes — the loss will be high if it makes many
mistakes, and low if it makes few mistakes. Ideally of course, we would like the
model to have no cost at all, i.e. minimum possible loss.
The first one we will meet is called the log loss. The log loss, also known as LOG LOSS
the cross-entropy loss function is: CROSS-ENTROPY

L(f(x). ) = —{ylog f(x) + (1 = y) log(1 - f(x)) } (212)

To understand this, remember that for any datapoint y is either 1 or 0. So, only
one of the two terms inside the brackets applies for any given datapoint. When
y =1, the loss is — log f(x), which when plotted looks like this:

— Log loss function
2.5r
ol
P
815
|
1}
0.5r
0 i i i i
0 0.2 0.4 0.6 0.8 1

f(x)

Figure 2.9: The log loss function, for y = 1. The loss (i.e. cost) is highest when
f(x) = 0, in fact at exactly 0, the loss is infinite. Therefore, the algorithm is
encouraged to push the output toward the correct response at f(x) = 1.

On the other hand, when the true label y = 0, we get the term —log(1 — f(x)),
the loss is the opposite, highest at f(x) = 1, lowest when f(x) =y = 0.
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When a loss function is summed or averaged over all data points, it is called
an error function. The summed log loss gives us an overall error function of:

N

E=-3%" {yi log f(xi) + (1 — y:) log(1 — f(xi))} (2.13)

i=1

This error function is known by two names: the cross entropy error, or the
negative log-likelihood. I'm letting you know this just in case you see it in other
places referred to by a different name.

We now have to find the right parameter settings for w, ¢, that minimise the
error function. To do this we will use a technique called gradient descent.
Figure 2.10 shows the summed cross entropy error on the simple dataset from
the previous section. Here we've set the logistic regression parameters in a
particular way (see caption) and varied one of them so you can see again the
error landscape for this parameter, just as we saw a landscape earlier in fig 2.4

for the decision stump parameter.
17

Cross—-Entropy Error
o >

>

13
-2 -1 0 1 2

W,

Figure 2.10: Another error landscape: the summed cross-entropy error,
eq.(2.18), for the simple dataset from the previous section, using a logistic re-
gression with w; = 3, t = 3, and wy varied in the range [—2,2].

The value of this error function is high when (for example) ws = —1.2; and
decreases toward its global minimum at we = 0.6. Imagine we currently had
we = —1.2, and wanted to decrease our error. From the diagram, you can clearly
see we want to increase the wo parameter. We note that the gradient (i.e. slope)
of the error function at we = —1.2 is approximately AE/Aws ~ —1.7. The
rule of gradient descent says: in order to decrease error, we should
update parameters in the direction of the negative gradient. In this
case, the sign of the gradient is negative, so we must make a positive change to
wy. The reverse is true if ws = +1.2. There the gradient is about 42.5, positive,
so we should make a negative change to wy, moving it toward the minimum.

The gradient of a function for a parameter is given by its partial derivative
with respect to that parameter. For the cross entropy error function, eq(2.13),
with the logistic regression model, eq(2.10), the partial derivative with respect
to a parameter w; is:

oE  OF of(x) O(wlx—t)
ow; — 9f(x) d(wlx —t) ow;

=D (f6xi) =)y (2.14)

%
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SELF-TEST

Ltu"h, % Mw/\‘/// If you are ok with calculus, try proving eq(2.14) for
%} yourself. Hint: 0f(x)/0(wlx —t) = f(x)(1 — f(x)).
ae

You may well now be very confused. A slightly more intuitive way to think
about gradient descent is simply changing the parameters such that you move
“downhill” in the error landscape. Figure 2.11 shows an example of this for a
more complex error function, and show two parameters instead of just one.

lterations: 47, Error: 0.34751

Figure 2.11: Illustration of gradient descent on a more complex error function.
The algorithm was started from a random location (w; = —0.2,ws = 1.6), and
followed the steepest gradient at each step. The algorithm converged in 47 steps,
and found a parameter configuration with error 0.34751. Notice that on this
occasion it converged to a local minimum at (w; = —1.3,ws = 0.2), instead of
the global minimum at (wy = 1.2, ws = —1.6).

Algorithm: Gradient Descent

w < randvector(), a < 0.1

repeat
for each parameter j do
W =W; —« g fj // move w; in direction of negative gradient
end for

until termination criterion met
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In practice, we often use an approximation to this algorithm, called stochastic
gradient descent. With this modification we compute the gradient for each
example one by one, and modify the parameters for each, in an iterative fashion
as we did with the Perceptron learning algorithm. Stochastic Gradient Descent
is often applied as it works well more effectively in very large datasets, such as
many found in industrial applications.

The final learning algorithm takes a similar form to the Perceptron learning
algorithm. In fact you’ll notice that this is virtually identical, the key difference
is in the parameter update equation, where it uses f(x) instead of §. The
threshold parameter is again updated — in a similar way to before, though now
we know that these new updates guarantee to minimise the error function, as
far as it can be done so.

Learning Algo. for Logistic Regression: Stochastic Gradient Descent

t + rand()

w <« randvector ()

maxepochs < (5 x numFeatures) //usually ok for most datasets
a+ 0.1 // alpha is our stepsize

for epoch = 1 to maxepochs do
for each training example (x,y) do
for each parameter j do

w; =w; —a(f(x)—y)z; //step in negative gradient direction
end for
t=t+a(f(x)—y) //step in negative gradient direction
end for

end for

Another difference is the Perceptron will eventually stop updating if all data
points are correctly classified, whereas the logistic regression keeps iterating to
improve its loss function, and thus a specification mazepochs is necessary to say
how many iterations it should perform. In fact it turns out that the logistic
regression has a unique minimum, so converges there (if slowly) as more epochs
are run.

Perhaps most interesting about this algorithm, is that it shows the percep-
tron algorithm is an approximation to gradient descent. This explains at least
partially why the perceptron algorithm works.
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2.3 What you should know by now

By now you should know (and be able to define) the following :
Decision Stump
Linearly Separable versus Non-Linearly Separable (or linearly inseparable)
Linear model / Discriminant function
Overfitting
Perceptron Learning algorithm
Logistic Regression
Cross-entropy / log loss function
Error function / Error Landscape

Gradient Descent
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2.4 Optional: The Geometry of Linear Models

This section will not be covered in lectures, but is intended as extra reading, to
give you a deeper understanding of the geometry of the linear classifier. You will
not be asked to reproduce any of these proofs in an exam, though attempting
to understand these will provide a very solid basis for a deeper understanding
of the next topic. To begin, we will show that:

1. The angle of the separating plane is controlled by the vector w.

2. The shift of the separating plane from the origin is given by m

We start from the definition of our linear classifier:
f(x)=wlx—t (2.15)

For two points x4 and xp that sit on the plane, we have,

wixy—t = wixgp—t=0 (2.16)

wl(xs—x5) = 0 (2.17)

The vector (x4 — xp) points along the decision boundary. Now, since the
product of two vectors is proportional to the cosine of the angle between them,
and cos(90) = 0, then we have that w’ is orthogonal (90 degrees) to the vector
pointing along the boundary. Wherever the vector w points, the plane sits at
90 degrees to it.

>0 2

f=0
£<0 \

What about the ¢ term? What role does that play? Remembering that the unit

vector? of w is —HXH, then we can write an expression for an arbitrary point x
as,
w
X=X] +ro— (2.18)
[[wl|

that is, a point x, that is the orthogonal projection of x onto the plane, plus
the unit vector scaled by a quantity r, the (signed) distance from the plane to

2http://www.ies.co.jp/math/java/vector/unit_vector/unit_vector.html
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point x. The unit vector IIxiH tells you the direction, and r “stretches” the point

x, out towards x. If x sat behind the plane, r would be negative. To find an
expression for 7, the first step is to take the above, multiply by w’ and subtract
t.

w
X = X +r7—p (2.19)
[wl|
- 7 wlw
wx—t = wa_—t—l—r” T (2.20)
w

Then remembering that ||w|| = vVwTw and using eq(2.15), this is

fx) = rllwl| (2.22)

So the length of the vector from the plane to a point x orthogonal to it, is

R (6 (2.23)

[[wl|
If we choose our ‘arbitrary point’ to be the origin, x = {0, ...,0}, we have

S (waft)i —t
= Wl T (2.24)

This is the vector from the plane the origin, so reversing it, the vector from the

origin to the plane is
t

5= Tl (2.25)

So, the distance of the plane from the origin is controlled by t.
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An interesting observation to note is that the same hyper-plane can be defined
by several different parameter settings. Imagine multiplying the weight vector
w by a constant scalar k. This stretches the weight vector in the above figures,
but does not change the angle of the plane, since only the magnitude, not the
direction, of the vector is changed. This does however, shift the plane somewhat,
since w is involved in the s = II‘ZETH term. This can be compensated for, by scaling

the ¢ by the same value k. Proof follows. First define w' = kw.

W'l = VkwTkw
= Vi2vwTw
— Kwl. (2.26)

Then define ¢’ = kt, and the shift of the plane from the origin is still given by,

t/ kt t

- - - . (2.27)
(W[l Elwl] - [[wl|

S

So, multiplying all the parameters by a constant term does not change the
position of the plane. This result will be key to a deep understanding the next
major topic, of Support Vector Machines.
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This section will not be covered in lectures, but is intended as optional extra
reading. You will not be asked to reproduce any of this material in an exam, c
‘

2.5 Optional: Neural Networks
PR

though you may find it interesting for your projects.

2.5.1 What is a neural network?

Put simply, a neural net is just some logistic regression units plugged together:

output layer
input layer
hidden layer

Each logistic regression unit is referred to as a neuron, and they are usually
arranged in layers as shown in the image. The image shown is a simple example
known as a fully-connected multi-layer perceptron — however, there can be more
complex connection patterns and even loops.

The input layer is where we feed in the input vector, x, as we have for the
single logistic regression — the example shown in the image is for 3 inputs, so
the x vector has only two elements. Each layer feeds the output of the neurons
into the next layer, finally emerging from the output layer — which are again
just logistic regression units.

There are several valid learning algorithms for a neural network. The most well
known one is called back-propagation, which is a simple extension of the gradient BACKPROP
descent principle we covered in this chapter.

If you wish to read more on this topic, there are many resources on the web,
and in the textbooks recommended on the course unit website.
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3.1 Reminder of Supervised Learning Protocol

So, you've just learnt a whole bunch of stuff. You should think about this
material as a set of tools, and remember that it is possible to use tools effectively,
but also possible to use them very naively. We will now look at how to evaluate
models thoroughly and fairly, i.e. to avoid using them in a naive manner.

You will no doubt remember the diagram below from earlier chapters. This
outlines the basic protocol we follow when applying machine learning. We have
some data, which we use to construct a model, after which, the model is evalu-
ated on some other data, that it has never seen before. The data to build the
model is called training data, and the other is called testing data. Just to remind
you, the training error is the number of mistakes that the model makes on the
training dataset after it has been trained. The testing error is the number of
mistakes that the model makes on the testing dataset after it has been trained.

“Training” Data

wrme >

TRAINING ==

Learning
Algorithm

T octingh Predicted Labels

Testing” Data . >

(no labels) Model
1 1
) - __l

I
TESTING
Figure 3.1: The basic supervised learning pipeline — the “training” stage:

use data to build a model, then the “testing” stage: evaluating the model on
unseen testing data.

The trouble is, we have only one set of data. We’ve already seen part of the
solution back in section 2.1.3, with the idea of splitting the dataset into training
and testing data. We take a random half of the data, train the model, then test
it on the other half. This protocol ensures that when we test the model, it can’t
“cheat”, by having seen the answers before, kind of like a student having to sit
an exam. The random splitting is one of several ways to evaluate a model —
we will now discuss another one.
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3.2 Model Selection via Cross-Validation

Note: there is a nice online video which explains the concepts in this section in
a slightly different way - you may like to watch it.

http://vimeo.com/29569892

Imagine you have two possible models which you could use on a problem.
You have a data with 1000 examples. We would like to predict as well as possible
on future, unseen, testing data. You have a logistic regression, and a decision
stump. Which one is “best”? Which model should you select?
The problem of picking the ‘best’ from a pool of possible models is called
model selection. You could train each model on the 1000 examples that you
have, see how many mistakes each one makes, then select the model that makes
the fewest mistakes. This would be a terrible idea.
Instead, we will do the following with the data. We will split the data into
several parts, called folds. DATA FOLD

Data fold 1
Data fold 2

Data Data fold 3

w—0 "o —

Data fold 4

Data fold 5

Figure 3.2: Splitting the data into folds for cross validation.

In the first step, we train the model on folds 1-4, and test on fold 5. The
next step trains the model on folds 1,2,3 and 5, but tests on 4. The next trains
on 1,2,4,5, then tests on 3, and so on. In each step, the model has never seen
the folds that were left out, so it’s kind of like being deployed out in the real
world, when it encounters some unseen data. Finally, we average the errors that
happened in each fold. This final average is called the cross-validation error. CROSS-VALIDATION
The results of this procedure might be, for example with a logistic regression: ~ERROR

Train on folds 1,2,3,4... then test on fold 5, where the error rate is: 16%
Train on folds 1,2,3,5... then test on fold 4, where the error rate is: 12.5%
Train on folds 1,2,4,5... then test on fold 3, where the error rate is: 17%
Train on folds 1,3,4,5... then test on fold 2, where the error rate is: 14.1%
Train on folds 2,3,4,5... then test on fold 1, where the error rate is: 10%

Logistic Regression - Average : (16+12.54+17+14.1+10)/5 = 13.92%
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TRAIN TRAIN TRAIN TRAIN TEST |:|
TRAIN TRAIN TRAIN TEST TRAIN
TRAIN TRAIN TEST TRAIN TRAIN
TRAIN TEST TRAIN TRAIN TRAIN
TEST TRAIN TRAIN TRAIN TRAIN

Figure 3.3: Splitting the data into folds for cross validation.

Then, say we repeated this whole process for a decision stump, and got:

Train on folds 1,2,3,4... then test on fold 5, where the error rate is: 16%
Train on folds 1,2,3,5... then test on fold 4, where the error rate is: 16.5%
Train on folds 1,2,4,5... then test on fold 3, where the error rate is: 17%
Train on folds 1,3,4,5... then test on fold 2, where the error rate is: 16.2%
Train on folds 2,3,4,5... then test on fold 1, where the error rate is: 17.1%

Stump - Average : (16+16.5+17+16.2+17.1)/5 = 16.5%

What can we tell about these models from the results? One might consider
that the logistic regression is the best classifier to go with, as it has a lower
average error rate. But, notice that the variation in the performances across
the five folds is larger with the logistic regression. Quantifying this, the standard
deviation is higher at o = 2.794 for the logistic regression, than the stump which
has ¢ = 0.4827. The stump is said to be a more stable model. T am not saying
that now you should prefer the stump model, but simply pointing out that there
are multiple ways to quantify the utility of a model.

Leave One Out Cross Validation (LOOCYV) is the extension of this principle
when we have very small datasets. In this situation where we might have N
data points, we make N folds where each fold is just a single example. So, we
train on N — 1 points, then test on the one that we left out, then repeat for
every example. This is clearly quite computationally expensive, so we normally
only do it for very small datasets.

You might think this is the end of the chapter - that we now know how
to evaluate a model. In fact, we have overlooked an important question — is
this cross validation error a good estimate of the future generalisation
error? The answer is no, in fact it will be an optimistic estimate, i.e. it will
make you think your model is better than it actually is. The reason for this is
that you have implicitly fitted some of the parameters to the training data, by
iterating over it with the different folds.
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Figure 3.4: Full cross-validation procedure, with train, validation and test sets.

The solution is to separate your data into 3 parts : a training set, a validation
set, and a test set. So, the final procedure is:

1. Split the data into (for example) K = 5 folds.

2. Keep the 5th fold as a hold-out test set.

3. Perform cross validation with the remaining 4 folds.

4. Select the model that performs best on average over those 4 folds.

5. Evaluate the model on the hold-out test set.

This final figure, the error on the hold-out test set, is a good estimate of fu-

ture generalisation performance. However, it has a variance. To reduce the VARIANCE
variance, this entire procedure can be repeated many times, by shuffling the

data examples. The average test error (and standard deviations) can then be

reported.

3.3 Plotting your Results

In the previous sections you will have noticed wvariation in the performance
of the models. The standard deviation of error is an important property of a
model. Imagine telling a customer that your model will likely have generalisation
performance on average of 20% error, plus or minus 10%, versus being able to
tell them you can get 22% error, plus or minus 0.1%. The more stable model is
potentially more reliable even if on average it does slightly worse.

In this case we should be plotting confidence intervals around our perfor-
mances, as shown in the figure below.
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Figure 3.5: Error bars — the line is the mean performance, while the up-
per/lower bars represent the 95% confidence intervals.

If you are not aware of the concept of confidence intervals, please consult a
statistics tutorial — some are mentioned in the conclusion section of this chapter
and on the course website.

3.4 Useful Trick: Rescaling Your Data

Sometimes, you will get data with varying ranges. By this I mean you might
have measured peoples’ salaries in pounds, and their height in centimetres.
Let’s say the most wealthy person in your dataset earns £70,000, and the least
wealthy earns £5,000. The heights are then in the range 160cm to 200cm. If
we supply these features to a logistic regression, the learning will take a long
time to converge. Feature scaling speeds up gradient descent by avoiding many
extra iterations that are required when one or more features take on much larger
values than the rest. The usual way of doing this is called normalisation, which
works as follows.

1. Given a feature, calculate the mean and standard deviation
2. Subtract this mean value from every example.
3. Divide the result by the standard deviation.

The result of this is a new feature, which we replace the old one with.
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3.5 What you should know by know

You should know what cross validation means, and why it is needed. You should
know what confidence intervals are, and why there are needed. You should ide-
ally be able to perform one or two statistical tests, which you can make use of
in your projects.

For more information on confidence intervals and statistical tests, consult the
book chapter on the course website:

Statistical estimation using confidence intervals, by David Jones.
http://studentnet.cs.manchester.ac.uk/pgt/COMP61011/materials/PharmStats.pdf
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4.1 What you need to know about SVMs

We’re about to embark on learning a new model, the Support Vector Machine.
The models we’ve seen so far (decision stump, perceptron, logistic regression)
are all quite simple and effective classifiers, though quite limited. The SVM on
the other hand is an absolutely state of the art modern classifier, that became
popular in the early 2000s. To summarise what is in this chapter, there are
several points you should know:

1. Support Vector Machines are state of the art classifiers.
If T had to trust my life to a machine learning algorithm, there are only
two algorithms I would go with — SVMs are one of them. You’ll find out
what the other is in a chapter to come.

2. They are VERY maths heavy.
If you thought this course has been heavy on the maths so far, then you're
in for a surprise — we’ve barely begun. The SVM was originally derived
in 1963 by a Russian mathematician called Vladmir Vapnik, and under-
standing them to the deepest of levels requires knowledge of topics such as
as “reproducing kernel Hilbert spaces”. Fortunately, you can learn to use
SVMs without too much of this depth, but you can’t avoid it completely.

3. They maximise the margin.
The SVM learns an optimal linear boundary in the sense that they place
the boundary exactly halfway between the two classes. This is called the
boundary with maximum “margin”.

4. They use a ‘hinge’ loss function.
The hinge loss gives nice properties, but it requires a new type of learning
algorithm called “quadratic programming”, instead of the gradient descent
we’ve used til now. We will not cover QP in detail but you should know
it exists.

5. They can solve non-linearly separable problems.
All the models we’ve seen so far draw linear decision boundaries — the
decision stump, the perceptron and the logistic regression cannot perfectly
solve problems where the data is ‘muddled up’ with overlapping classes.
The SVM is also a linear model, but using the “kernel trick”, can solve
nonlinearly separable problems.
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4.2 Decision Boundaries with Large Margins
Below we have two identical problems (on the left and right) with two alternative

decision boundaries, each of which perfectly separate the data. Given the choice
of the two, which one would you choose to deploy out in the field as a model?
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I hope you just said “the one on the right”. With both solutions, the parameter
vectors were positioned so as to correctly classify all the training data points.
However there is a difference between them — the boundary on the left has
‘only just’ separated the points, whereas the one on the right has ‘breathing
space’, where the distance from the boundary to the closest data point is much
larger. This is illustrated below for each boundary by imagining the decision

boundary getting fatter and fatter, until it touches some data points.
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The diagram on the right is said to have large margins, i.e. a lot of space

on either side of the decision boundary. In this case, if a test point arrived that
was quite similar to the training data, we would have the best possible chance

of correctly classifying it.

The topic of this chapter is the Support Vector Machine, which is a linear
model, meaning it is of the form f(x) = wlx —¢. The SVM uses a special loss
function and learning algorithm which allow it to find a linear decision boundary
with large margins. So, another way of thinking about an SVM is that it
finds the optimal linear decision boundary. We will now get a little more

formal in describing these concepts, to see how the SVM achieves this.
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The margin of a decision boundary is the perpendicular distance to the
closest training datapoint.

The natural choice of decision boundary would be the one that has maximum
margin. The Support Vector Machine finds this decision boundary.

Using a bit of quite complex geometry (see the original SVM paper, at the
end of this chapter), it was proven that the margin for a decision boundary is
inversely proportional to the length of its parameter vector w. More formally,

margin o<

] .1

where the length of w is given by ||w]|| = \/2?21 w]2 So, in order to maximise

the margin, we can equivalently minimise ||w||. However, the obvious solution
is just to set w; = 0 for all j, which would clearly be an awful model, just setting
all parameters to zero. So, we need a constraint, to ensure that the parameters
do not shrink too much, but are balanced against the need to correctly classify
the data points. This constraint is encoded by the hinge loss function.

4.3 SVM loss function and Learning Algorithm

The convention in SVM terminology is to have class labels that are —1/41, or
written more formally y € {—1,+1}. We remember of course that the linear
model f(x) = wlx — ¢ has value 0 for an x that sits exactly on the decision
boundary, and is positive on one side, negative on the other. So, combining
these two facts, we know that if,

yif(x:) >0

then the data point was correctly classified by the model. Take a minute to
think about this, as this stmple notational trick will be used again and again
through the following sections.

(4.2)
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The “hinge” loss function makes use of this, and can be stated as,

Lhinge = mmax {Oa 1- yzf(xt)} (43)
Or graphically,
2
1.5F
g
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Figure 4.1: The “hinge” loss function. Notice that the loss decreases linearly
until yf(x) > 1, at which point the “hinge” turns the loss to zero. This ensures
that once the model is correct with certain confidence, it is not penalised any
further.

The hinge point means that the loss is not continuously differentiable, hence
we cannot use gradient descent as our learning algorithm here. Instead, we’ll
formalize our SVM error function such that we can use a different learning
algorithm.

If we combine the need to minimise ||w|| with the need to minimise the hinge
loss, and sum over all training data points, we get our SVM error function,

E= Zmax{O 1—yf xz} Zw (4.4)

Notice that instead of minimising ||w||, we have chosen to minimise the square
of it, with a constant % placed in front of it. This is important as it makes our
SVM error function into a quadratic programming (QP) problem with linear
constraints. The 1 Z w is the quadratic part, and the hinge loss is the linear
constraint.

The learning algorithm for SVMs is therefore any QP solver, of
which there are many, highly efficient, implementations. While for
logistic regression, we played with the details of gradient descent, and maybe
you even implemented it, the details of QP solvers are quite complex, and it is
not really recommended that you try to implement them yourself.

QUADRATIC
PROGRAMMING
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Error: 0/5, w=[-3.62 -3.1], 6 = 6.6148

-2

Figure 4.2: An optimal linear boundary, in the sense that it maximises the
margins, as placed by an SVM. The data points that are circled are known as

the support vectors.
The figure above illustrates the result of applying an SVM to a simple linearly
separable dataset. The boundary is shown as a dashed line, and the margin is
illustrated by the solid lines, called the supporting hyperplanes. The data points

SUPPORT VECTORS that touch the supporting hyperplanes are called the support vectors, which

reveals to you why this is called a Support Vector Machine.
However, notice that this is still a linear decision boundary. Yes, that’s

right, the SVM is still a linear model, or more technically, it is linear-in-
LINEAR-IN-THE- the-parameters. But, it has two tricks up its sleeve which make it a much more

PARAMETERS  powerful learning paradigm.

4.4 SVDMs with “Soft” Margins

Imagine we had a dataset, with two possible decision boundaries to choose from,

illustrated below.
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The one on the left is correctly classifying all the training points, whereas the
one on the right makes one classification error. However, it’s quite clear from
looking at the scatterplot, that there is an ‘outlier’ datapoint, one that was
probably mis-labeled when our dataset was constructed. Wouldn’t it be nice if
we had a way of modifying our SVM loss function such that it could automati-
cally take account of things like this, without us having to scatterplot and look
for outliers? Well fortunately there is, and it’s called the soft margin SVM.

We now modify our hinge loss function, to include slack' variables. The new
loss function is,

Lh,inge = max {07 1- ylf(xl) - 67}5 (45)

or, graphically,
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This gives allowance for data points that might be mislabelled—the slack vari-
able &; is the amount of slack given to datapoint x;. If the slack for a point is
greater than 1, it means the datapoint is “allowed” to be incorrectly classified,
so as to allow the overall dataset to be reasonably well classified. If it is greater
than 0, then it is allowed to violate the margins, hence why this is called the
‘soft” margin’ SVM. These concepts are illustrated in figure 4.3.

The slack however does not come without a price. For each bit of slack, the
SVM must pay a penalty. The error function for the soft margin SVM turns
out to be a simple modification of the original:

&1+ Zw +CZ&

where we have used the hinge loss with slack, and included a penalty C')", &;,
which penalises the SVM for allowing slack variables. The problem therefore
becomes a tradeoff between allowing slack and optimising the loss function, all
while maximising the margin. The trade-off can be influenced by the user via
the coefficient C. The value of C roughly translates as how “soft” the margins

E= Zmax {0 11—y f(x;) — (4.6)

IDictionary definition of “slack”: to loosen, to make allowance for, to be less strict

SOFT MARGIN SVM

SLACK VARIABLES
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will be. A higher value means more the penalty for margin violations is very
severe, hence a stricter SVM solution. A very small value says no penalty for
slack variables, hence we are allowed to make mistakes. The default value is
usually C' = 1. The effect is illustrated graphically in figure 4.4.
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Figure 4.3: Soft margin SVM. The £ values are optimized by the QP algorithm,
allowing the margin to “soften” at certain points along its length, essentially
allowing the SVM to ignore points that cross over its boundary.
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Figure 4.4: The effect of C, the slack variable penalty. A large value (left) means
a very strict penalty, so a very strict SVM solution will be found, even if the
margin is small. A smaller value (rTight) means some data points are allowed to
violate the margins, hence an approximate SVM solution is found, but it has a

larger margin.
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4.5 Non-Linear SVMs : The “Kernel Trick”

SVMs have a further trick up their sleeve, allowing us to solve non-linearly
separable problems. The general idea will first be illustrated, then we’ll go
into the maths of exactly how it works. Imagine we had to solve the linearly
inseparable problem on the left below.

°
5 °
X ] °
: e ]
s el e XX, XX
: X
Linearly inseparable in 1D... ...becomes separable in 2D

We started with a one-dimensional problem. The crosses and circles are inter-
mixed, so cannot be separated with a straight line. On the right, we have added
an extra dimension to our plot, z2, and all of a sudden the problem becomes
linearly separable. The principle is further explored, where the original data is
in 2d, in the diagrams below, and we illustrate how an SVM can help us.

Here, a dataset (LEFT) is non-linearly separable in the original 2d space. If we
project the data upward into a 3d space (MIDDLE), and find that we can sepa-
rate it with a linear boundary (which is a plane in 3d). When we return to the
original 2d space (RIGHT) the data points are “warped” back to their original
positions, but the decision plane is also warped, giving us a nonlinear boundary.

Our challenge in this section therefore, is to understand how we can define
an appropriate high dimensional space, into which we will project our data.
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Just as a reminder, the linear SVM is of the form,
f(x) =wlx —t. (4.7

As a first step before we go into this, we use a simple rearrangement of the
linear model. Instead of having the threshold ¢ as a separate parameter, we can
incorporate it as an extra wy parameter:

fx) = wix—t (4.8)

d
= ijxj —1 (49)
j=1
d
= > wiz; + (—1 x w) (4.10)
j=1

d
= ijxj (411)
7=0

where t = wg and g = —1 is a new constant input feature. This has built
the threshold into our model in a visually different way, though mathematically
equivalent. If you derive the update equations for gradient descent as we did
earlier, you should find them to be identical.

Now, returning to our problem, we have to think up some new set of features,
projecting the x into a higher dimensional space so we can separate the classes
with a linear boundary. We can denote the hypothetical high dimensional space
by the function ¢(-) which acts upon a vector x to produce a new x. So, we can
rewrite our model as,

f(x) = wlo(x) (4.12)

But what ¢ should we choose? Fortunately the Kernel trick shows us how we
can avoid this problem. The Kernel trick relies on a piece of mathematics called
the Representer theorem (Kimeldorf & Wahba, 1971).
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4.5.1 The Kernel Trick

The Representer theorem (Kimeldorf & Wahba, 1971) proved that an opti-
mal linear decision boundary was always of the form w* = Zil ;Y X;, for some
set of parameters «;, where the x; are the training data vectors, and remem-
ber y; € {—1,+1}. Put another way, this shows that, the optimal parameters
for a linear model are actually a simple linear combination of the training data
points?. This result can be plugged back into our original equation for the linear
model, which when operating to classify a hypothetical test point x’ is of the
form,

/ T/ Y T /
f(X):W X = {Zaiyixi} X (413)
=1
N
= Zaiyix;?rx’ (4.14)
i=1

or if we used our hypothetical ¢,
N
F) =" cyio(xi) (x') (4.15)
i=1

Notice that the training data points are expressed only as dot products with
the test point, i.e. the result of ¢(x;)T¢(x’) is a scalar quantity. Wouldn’t
it be nice if there was a class of mathematical functions, that would give us
the scalar result that we needed, but without computing the ¢ high dimensional
space? That would seem quite strange, and sounds like wishful thinking, but
it’s true, they are called ‘kernel functions’, and their existence is referred to as
the kernel trick.

K(xi,x) = ¢(x;) T p(x) (4.16)

where ¢ is some high dimensional function. So, we can use a kernel function
instead of the dot product, as so:

N
() = Z iy K (%, x'). (4.17)

The «; parameters that are left will still be learnt via quadratic programming,
so all we have to do is choose an appropriate kernel. Mercer’s Theorem states
that any continuous, symmetric, positive semi-definite function K(x;,x’) is a
valid kernel. We will now meet two examples of this.

2This can also be seen by examining the updates in the Perceptron learning algorithm.

KERNEL TRICK

MERCER’S
THEOREM



POLYNOMIAL
KERNEL

48CHAPTER 4. GEOMETRIC MODELS 1I: SUPPORT VECTOR MACHINES

4.5.2 The Polynomial kernel

The polynomial kernel is expressed,
K(x;,x') = (1+x/x)* (4.18)

where d is the degree of the polynomial. Note that I have reused notation
here, d was earlier the dimension of the original feature space - here I used it
again simply because d is the usual notation for the polynomial degree in the
literature.

If you use a 2nd order polynomial, and multiply out the kernel above, you
should get to the conclusion that it uses the implicit feature space: ¢(x) =
(1,v/2x1, V22,22, 3, /22125). So it has projected from a 2-d space into a 6-d
space. When we project back into the original 2-d space, we get a non-linear
boundary. The clever thing is that although we technically will be working with
high dimensional functions ¢, we never explicitly compute them, we just work
with the kernel function instead.

0.5

GO 0.5 1 1.5 2

Figure 4.5: A nonlinearly separable dataset being solved by an SVM with a
polynomial kernel of degree 2. The support vectors are circled.

The effect of varying the degree of the polynomial can be seen below. The
higher degree, the more high order terms are introduced to the implicit feature
space ¢, hence the final decision boundary becomes more complex.

Polynomial, d=1 Polynomial, d=2 Polynomial, d=5
6

s 0 5 5 0 5 5
Figure 4.6: The effect of the degree parameter when using a polynomial kernel.
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This also illustrates that the linear kernel is a special case of the polynomial
kernel, when d = 1.

4.5.3 The RBF kernel

A very popular kernel is the Radial Basis Function (RBF), also known as the

Gaussian kernel: o
K(x3,x') = e 7)) (4.19)

Where v = # controls the width of the Gaussian, and o is the standard
deviation. So, a large v means a small standard deviation, hence a very narrow
RBF kernel. This gives rise to the name ‘inverse width’ parameter for ~.

A small v implies a very smooth fit, with a large region of influence for a
given training data point. Similarly, narrow RBF width (large ) means the
influence of training points is is much more localised. In the limit (y — o0), a

data point is not connected to any other data point.
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Figure 4.7: Varying the width of the RBF kernel.

The larger v is, the more overfitting we might expect.
A smaller v will produce smooth boundaries, possibly underfitting.
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Figure 4.8: A non-linear problem being solved by an SVM with an RBF kernel.
The effect of -, the inverse-width of the Gaussian kernel, is illustrated.
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4.5.4 Model Selection with SVMs

We have just introduced some new parameters, that need to be set, via model
selection, i.e. we pick the SVM configuration with the best performance. Tech-
niques to find a good setting are fully described in the suggested reading on the
course website “A Practical Guide to SVM Classification”. It should be noted
that the parameters are not independent, so for example, below is what
happens when we try to set the C' (slack variable penalty) and - parameters,
at the same time.

RBF,y=10, C=10 RBF,y=1, C=5 ROBF,y=10, C=5

Figure 4.9: The effect of varying two things at once!
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SELF-TEST

A learning algorithm constructs a kind of “data structure”, which is known
in Machine Learning terminology as a . Perceptrons and Logistic
Regressions are examples of this, which can only solve separable
problems.

The SVM is a model, just like the Perceptron. The first differ-

ence is that the SVM can identify the boundary with ,

which decreases its generalisation error. The datapoints lying on the

are known as vectors. The second difference is that the SVM uses the
trick and projects into a dimensional space,

then solves the linear classification problem in that space instead of the origi-

nal. All of this assumes that the data will be separable in the new
space. The third difference is the use of variables. This means
it can solve problems by allowing some points to not be con-

strained to be correct.

Although the SVM fits a linear boundary exactly, without need for an itera-
tive algorithm, it still has parameters. The slack variables are controlled by the
parameter. If we use a Gaussian kernel, the parameter controls the

width of the Gaussian.
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4.6 What you should know by now
By now you should know (and be able to define) the following :

Margin

Hinge loss

The SVM objective function
Slack variables

Kernels and the Kernel trick
Support Vector

A handy table to summarise what we’ve done so far....

Model name ‘ Loss Function ‘ Learning Algorithm
Decision Stump Zero-One Line Search
Perceptron - Perceptron Algorithm
Logistic Regression Log Gradient Descent

Support Vector Machine | Hinge (+margin) | Quadratic Programming

SELF-TEST

L”h, %E%W Which one of these two solutions is likely to be

e ) better for testing data? Why?
£

Error:0/5, w =[-4.22 -0.82], 0 = 8.003 Error:0/5, w =[-3.62 -3.1], 0 = 6.6148
\
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4.7 Optional: The Original SVM Paper

On the following pages is the research article where SVMs were first invented,
published in the Computational Learning Theory conference, 1992. Sometimes
going back to the source is the best way to understand something. Enjoy.
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Abstract

A training algorithm that maximizes the mar-
gin between the training patterns and the de-
cision boundary is presented. The technique
is applicable to a wide variety of classifiac-
tion functions, including Perceptrons, polyno-
mials, and Radial Basis Functions. The ef-
fective number of parameters is adjusted auto-
matically to match the complexity of the prob-
lem. The solution is expressed as a linear com-
bination of supporting patterns. These are the
subset of training patterns that are closest to
the decision boundary. Bounds on the general-
ization performance based on the leave-one-out
method and the VC-dimension are given. Ex-
perimental results on optical character recog-
nition problems demonstrate the good gener-
alization obtained when compared with other
learning algorithms.

1 INTRODUCTION

Good generalization performance of pattern classifiers is
achieved when the capacity of the classification function
is matched to the size of the training set. Classifiers with
a large number of adjustable parameters and therefore
large capacity likely learn the training set without error,
but exhibit poor generalization. Conversely, a classifier
with insufficient capacity might not be able to learn the
task at all. In between, there is an optimal capacity of
the classifier which minimizes the expected generaliza-
tion error for a given amount of training data. Both
experimental evidence and theoretical studies [GBD92,
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Moo92, GVB+92, Vap82, BH89, TLS89, Mac92] link the
generalization of a classifier to the error on the training
examples and the complexity of the classifier. Meth-
ods such as structural risk minimization [Vap82] vary
the complexity of the classification function in order to
optimize the generalization.

In this paper we describe a training algorithm that au-
tomatically tunes the capacity of the classification func-
tion by maximizing the margin between training exam-
ples and class boundary [KM87], optionally after re-
moving some atypical or meaningless examples from the
tratning data. The resulting classification function de-
pends only on so-called supporting patterns [Vap82].
These are those training examples that are closest to
the decision boundary and are usually a small subset of
the training data.

It will be demonstrated that maximizing the margin
amounts to minimizing the maximum loss, as opposed
to some average quantity such as the mean squared er-
ror. This has several desirable consequences. The re-
sulting classification rule achieves an errorless separa-
tion of the training data if possible. Outliers or mean-
ingless patterns are identified by the algorithm and can
therefore be eliminated easily with or without super-
vision. This contrasts classifiers based on minimizing
the mean squared error, which quietly 1gnore atypl-
cal patterns. Another advantage of maximum margin
classifiers is that the sensitivity of the classifier to lim-
ited computational accuracy is minimal compared to
other separations with smaller margin. In analogy to
[VapS? HLW388] a bound on the generalization perfor-
mance is obtained with the “leave-one-out” method. For
the maximum margin classifier it is the ratio of the num-
ber of linearly independent supporting patterns to the
number of training examples. This bound is tighter than
a bound based on the capacity of the classifier family.

The proposed algorithm operates with a large class of
decision functions that are linear in their parameters
but not restricted to linear dependences in the input
components. Perceptrons [Ros62], polynomal classi-
fiers, neural networks with one hidden layer, and Radial
Basis Function {RBF) or potential function classifiers
[ABR64, BL88, MD89] fall into this class. As pointed
out by several anthors [ABR64, DH73, PG90], Percep-



trons have a dual kernel representation implementing
the same decision function. The optimal margin algo-
rithm exploits this duality both for improved efficiency
and flexibility. In the dual space the decision function
is expressed as a linear combination of basis functions
parametrized by the supporting patterns. The support-
ing patterns correspond to the class centers of RBF
classifiers and are chosen automatically by the maxi-
mum margin training procedure. In the case of polyno-
mial classifiers, the Perceptron representation involves
an untractable number of parameters. This problem is
overcome in the dual space representation, where the
classification rule is a weighted sum of a kernel func-
tion [PogT75] for each supporting pattern. High order
polynomial classifiers with very large training sets can
therefore be handled efficiently with the proposed algo-
rithm.

The training algorithm is described in Section 2. Section
3 summarizes important properties of optimal margin

classifiers. Experimental results are reported in Section
4.

2 MAXIMUM MARGIN TRAINING
ALGORITHM

The maximum margin training algorithm finds a deci-
sion function for pattern vectors x of dimension n be-
longing to either of two classes A and B. The input to
the training algorithm is a set of p examples x; with
labels y;:

(x2, ), (x2,92), (x3,93), -, (Xp,9p)

w=1 if X3 € class A
Where { yr = —1 if x; € class B.

k -
From these training examples the algorithm finds the
parameters of the decision function D(x) during a learn-
ing phase. After training, the classification of unknown
patterns is predicted according to the following rule:
x€A ifD(x)>0 9
x € B otherwise. (2)

(1)

The decision functions must be linear in their parame-
ters but are not restricted to linear dependences of x.
These functions can be expressed either in direct, or in
dual space. The direct space notation is identical to the
Perceptron decision function [Ros62]:

N
D(x) = Y wigi(x) + b.
PE |

In this equation the ¢; are predefined functions of x, and
the w; and b are the adjustable parameters of the deci-
sion function. Polynomial classifiers are a special case of
P;.rceptrons for which @;(x) are products of components
of x.

(3)

In the dual space, the decision functions are of the form

P
D(x) =) oK (xk, %)+, (4)
k=1
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The coefficients «y, are the parameters to be adjusted
and the x; are the traiming patterns. The function K
is a predefined kernel, for example a potential function
[ABR64] or any Radial Basis Function [BL88, MD89).
Under certain conditions [CH53], symmetric kernels
possess finite or infinite series expansions of the form

K(x,x') = Z‘Pf(x) wi(x). {5)

In particular, the kernel K(x,x) = (x - x' + 1)7 cor-
responds to a polynomial expansion ¢(x) of order g
[Pog75)].

Provided that the expansion stated in equation 5 exists,
equations 3 and 4 are dual representations of the same
decision function and

P
wi = Z oppi( Xy ). (6)
k=1

The parameters w; are called divect parameters, and the
ay are referred to as dual parameters,

The proposed training algorithm is based on the “gener-
alized portrait” method deseribed in [Vap82] that con-
structs scparating hyperplanes with maximum margin.
Here this algorithm is extended to train classifiers lin-
ear in their parameters. First, the margin between the
class boundary and the training patterns is formulated
in the direct space. This problem description is then
transformed into the dual space by means of the La-
grangian. The resulting problem is that of maximizing
a quadratic form with constraints and is amenable to
efficient numeric optimization algorithms [Lue84).

2.1 MAXIMIZING THE MARGIN IN THE

DIRECT SPACE
In the direct space the decision function is

D(x) = w - p(x) + b, ()

where w and (x) are N dimensional vectors and b is
a bias. It defines a separating hyperplane in -space.
The distance between this hyperplane and pattern x
is D(x}/||lwif (Figure 1). Assuming that a separation
of the training set with margin M between the class
boundary and the training patterns exists, all training
patterns fulfill the following inequality:

¥ D(xe)
Tl ®)

The objective of the training algorithm is to find the
parameter vector w that maximizes M

M

> M.

*

= max
wliw|=1

subject to y.D(xe) > M,

(9)
k=12,...,p
The bound M™ is attained for those patterns satisfying

min ¢ D(xy) = M. (10)



Figure 1: Maximum margin lincar decision function D(x) = w - x + b (¢ = x). The gray levels encode the absolute
value of the decision function (solid black corresponds to D(x) = 0}. The numbers indicate the supporting patterns.

These patterns are called the supporting patterns of the
decision boundary.

A decision function with maximum margin is tllustrated
in figure 1. The problem of finding a hyperplane in
(-space with maximum margin is therefore a minimax
problem:

(11)

in ¥ D(xz).

B i D)

The norm of the parameter vector in equations 9 and

11 is fixed to pick one of an infinite number of possible

solutions that differ only in scaling. Instead of fixing

the norm of w to take care of the scaling problem, the

product of the margin M and the norm of a weight

vector w can be fixed.

Mliw|| = 1. (12)

Thus, maximizing the margin M is equivalent to mini-

mizing the norm )jw||.! Then the problem of finding a

maximum margin separating hyperplane w* stated in 9
reduces to solving the following quadratic problem:

: 2
rain 1w (13)
under conditions gy D{xx}>1, k=12,...,p.

The maximum margin is M* = 1/]}w*||.

In principle the problem stated in 13 can be solved di-
rectly with numerical techniques. However, this ap-
proach is impractical when the dimensionality of the
p-space is large or infinite, Moreover, no information is
gained about the supporting patterns.

1f the training data is not linearly separable the maxi-
mum margin may be negative. In this case, M{w| = -1
is imposed. Maximizing the margin is then equivalent to
maximizing [{w]|.
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2.2 MAXIMIZING THE MARGIN IN THE
DUAL SPACE

Problem 13 can be transformed into the dual space by
means of the Lagrangian [Lue84)

P
L(w,b,a) = %uwn’* =3 o [y Dixe) - 1(14)
k=1

subject to ax >0, k=1,2,...,p.

The factors oy are called Lagrange multipliers or Kithn-
Tucker coefficients and satisfy the conditions

ar(mD(xx)—-1)=0, &k=12,...,p (15)

The factor one half has been included for cosmetic rea-
sons; it does not change the solution.

The optimization problem 13 is equivalent to searching
a saddle point of the function L{w,$,a). This saddle
point is a the minimum of L{w, b, o) with respect to w,
and a maximum with respect to e (ax > 0). At the
solution, the following necessary condition is met:

oL

P
aw =w"— Za;ykwk - 0;

k=1

hence

P
W'=Y aiues- (16)
k=1
The patterns which satisfy y; D(xg) = 1 are the sup-
porting patterns. According to equation 16, the vector
w* that specifies the hyperplane with maximum margin
is a linear combination of only the supporting patterns,
which are those patterns for which a} # 0. Usually the
number of supporting patterns is much smaller than the
number p of patterns in the training set.



The dependence of the Lagrangian L(w,b, &) on the
weight vector w is removed by substituting the expan-
sion of w* given by equation 16 for w. Further trans-
formations using 3 and 5 result in a Lagrangian which
is a function of the parameters o and the bias b only:

P
Jeb) =Y on (1 - by) - za- H -, (17)
k=1

subject to oy > 0, k=1,2,...,p

Here H is a square matrix of size p x p with elements

Hyr = e K(xi, x1).

In order for a unique solution to exist, H must be posi-
tive definite. For fixed bias &, the solution a* is obtained
by maximizing J(c,b) under the conditions oy > 0.
Based on equations 7 and 16, the resulting decision func-
tion is of the form

D(x)

w'p(x)+ b
Z oy K(xx,x)+ b,
%

(18)
aj 20,

where only the supporting patterns appear in the sum
with nonzero weight.

The choice of the bias b gives rise to several variants of
the algorithm. The two considered here are

1. The bias can be fixed a priori and not subjected
to training. This corresponds to the “Generalized
Portrait Technique” described in {Vap82].

2. The cost function 17 can be optimized with respect
to w and b. This approach gives the largest possible
margin M* in ¢-space [VCT4].

In both cases the solution is found with standard non-
linear optimization algorithms for quadratic forms with
linear constraints [Lue84, Loo72]. The second approach
gives the largest possible margin. There is no guaran-
tee, however, that this solution exhibits also the best
generalization performance.

A strategy to optimize the margin with respect to both
w and b is described in [Vap82]. It solves problem 17 for
differences of pattern vectors to obtain a* independent
of the bias, which is computed subsequently. The mar-
gin in g-space is maximized when the decision boundary
is halfway between the two classes. Hence the bias d"
i8 obtained by applying 18 to two arbitrary supporting
patterns x4 € class A and xp € class B and taking into
account that D{x,4) = 1 and D(xp) = ~1.

bﬂl

H

—% (w* - p(xa) + " @(x5)) (19)

M

8|

4
> o [K (x4, %) + K(xp,x¢)] -
k=1

The dimension of problem 17 equals the size of the train-
ing set, p. To avoid the need to solve a dual problem of
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exceedingly large dimensionality, the training data is di-
vided into chunks that are processed iteratively [Vap82].
The maximum margin hypersurface is constructed for
the first chunk and a new training set is formed con-
sisting of the supporting patterns from the solution and
those patterns x; in the second chunk of the training
set for which yD(x:) < 1 — €. A new classifier is
trained and used to construct a training set consisting
of supporting patierns and examples from the first three
chunks which satisfy g D(xz) < [ —¢. This process is
repeated until the entire training sel is separated.

3 PROPERTIES OF THE
ALGORITHM

In this Section, we highlight some important aspects of
the optimal margin training algorithm. The deseription
is split into a discussion of the qualities of the resulting
classifier, and computational considerations. Classifica-
tion performance advantages over other techniques will
be iltustrated in the Section on experimental results.

3.1 PROPERTIES OF THE SOLUTION

Since maximizing the margin between the decision
boundary and the training patterns is equivalent to
maximizing a quadratic form in the positive quadrant,
there are no local minima and the solution is always
unique if H has full rank. At the optimum

1 1,

= —— == . 20
The uniqueness of the solution is a consequence of the
maximum margin cost function and represents an im-
portant advantage over other algorithms for which the
solution depends on the initial conditions or other pa-
rameters that are difficult to control.

Tat) = I’

Another benefit of the maximum margin objective is its
insensitivity to small changes of the parameters w or
a. Since the decision function D(x) is a linear func-
tion of w in the direct, and of « in the dual space, the
probability of misclassifications due to parameter vari-
ations of the components of these vectors is minimized
for maximum margin. The robustness of the solution—
and potentially its generalization performance—can be
increased further by omitting some supporting patterns
from the solution. Equation 20 indicates that the largest
increase in the maximum margin M* occurs when the
supporting patterns with largest «; are eliminated. The
elimination can be performed automatically or with as-
sistance from a supervisor. This feature gives rise to
other important uses of the optimum margin algorithm
in database cleaning applications [MGB*92].

Figure 2 compares the decision boundary for a maxi-
mum margin and mean squared error {MSE) cost func-
tions. Unlike the MSE based decision function which
simply ignores the outlier, optimal margin classifiers are
very sensitive to atypical patterns that are close to the



Figure 2: Linear decision boundary for MSE (left} and maximum margin cost functions {middle, right) in the presence
of an outlier. In the rightmost picture the outlier has been removed. The numbers reflect the ranking of supporting
patterns according to the magnitude of their Lagrange coefficient «;, for each class individually.

decision boundary. These examples are readily iden-
tified as those with the largest o, and can be elimi-
nated either automatically or with supervision. Hence,
optimal margin classifiers give complete control over
the handling of outliers, as opposed to quietly ignoring
them.

The optimum margin algorithm performs automatic ca-
pacity tuning of the decision function to achieve good
generalization. An estimate for an upper bound of the
generalization error is obtained with the “leave-one-out”
method: A pattern xi i1s removed from the training set.
A classifier is then trained on the remaining patierns
and tested on x;. This process is repeated for all p
training patterns. The generalization error is estimated
by the ratio of misclassified patterns over p. For a max-
imum margin classifier, two cases arise; If x; is not a
supporting pattern, the decision boundary is unchanged
and xz will be classified correctly. If x; is a supporting
pattern, two cases are possible:

1. The pattern x; is linearly dependent on the other
supporting patterns. In this case it will be classified
correctly.

X 18 linearly independent {rom the other support-
ing patterns. In this case the outcome is uncertain.
In the worst case m’ linearly independent support-
ing patterns are misclassified when they are omit-
ted from the training data.

Hence the frequency of errors obtained by this method
is at most m’/p, and has no direct relationship with
the number of adjustable parameters. The number of
linearly independent supporting patterns m' itself is
bounded by min(¥N,p). This suggests that the number
of supporting patterns is related to an effective capac-
ity of the classifier that is usually much smaller than the
VC-dimension, N + 1 [Vap82, HL.W88].

In polynomial classifiers, for example, N = n?, where
n is the dimension of x-space and g is the order of the
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polynomial. In practice, m < p « N, i.e. the number
of supporting patterns is much smaller than the dimen-
sion of the w-space. The capacity tuning realized by the
maximum margin algorithm is essential to get general-
ization with high-order polynomial classifiers.

3.2 COMPUTATIONAL CONSIDERATIONS

Speed and convergence are important practical consid-
erations of classification algorithms. The benefit of the
dual space representation to reduce the number of com-
putations required for example for polynomial classifiers
has been pointed out already. In the dual space, each
evaluation of the decision function D(x) requires m eval-
uations of the kernel function A'(x;,x) and forming the
weighted sum of the results. This number can be fur-
ther reduced through the use of appropriate search tech-
niques which omit evaluations of A" that yield negligible
contributions to D(x) [Omo91].

Typically, the training time for a separating surface
from a database with several thousand examples is a few
minutes on a workstation, when an efficient optimiza-
tion algorithm is used. All experiments reported in the
next section on a database with 7300 training examples
took less than five minutes of CPU time per separating
surface, The optimization was performed with an al-
gorithm due to Powell that is described in {Lue84] and
available from public numerical libraries.

Quadratic optimization problems of the form stated in
17 can be solved in polynomial time with the Ellipsoid
method [NY83]. This technique finds first a hyperspace
that 1s guaranteed to contain the optimwmn; then the
volume of this space is reduced iteratively by a constant
fraction. The algorithm is polynomial in the number of
free parameters p and the encoding size (i. e, the accu-
racy of the problem and solution). In practice, however,
algorithms without guaranteed polynomial convergence
are more efficient.
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Figure 3: Supporting patterns from database DB2 for class 2 before cleaning. The patterns are ranked according to

Q.
4 EXPERIMENTAL RESULTS

The maximum margin training algorithm has been
tested on two databases with images of handwritien
digits. The first database (DB1) consists of 1200 clean
images recorded from ten subjects. Half of this data is
used for training, and the other half is used to evaluate
the generalization performance. A comparative analy-
sis of the performance of various classification methods
on DB1 can be found in [GVB*92, GPP*89, GBD92].
The other database (DB2) used in the experiment con-
sists of 7300 images for training and 2000 for testing
and has been recorded from actual mail pieces. Results
for this data have been reported in several publications,
see ¢.g. [CBD*90]. The resolution of the images in both
databases is 16 by 16 pixels.

In all experiments, the margin is maximized with re-
spect to w and b. Ten hypersurfaces, one per class, are
used to separate the digits. Regardless of the difficulty
of the problem—measured for example by the number of
supporting patterns found by the algorithm—the same
similarity function K(x,x’} and preprocessing is used
for all hypersurfaces of one experiment. The results ob-
tained with different choices of K corresponding to lin-
ear hyperplanes, polynomial classifiers, and basis func-
tions are summarized below. The effect of smoothing is
investigated as a simple form of preprocessing.

For linear hyperplane classifiers, corresponding to the
similarity function K(x,x’) = x-x’, the algorithm finds
an errorless separation for database DB1. The percent-
age of errors on the test set is 3.2%. This result com-
pares favorably to hyperplane classifiers which minimize
the mean squared error (backpropagation or pseudo-
inverse), for which the error on the test set is 12.7%.

Database DB2 is also linearly separable but contains
several meaningless patterns. Figure 3 shows the sup-
porting patterns with large Lagrange multipliers oy for
the hyperplane for class 2. The percentage of misclassi-
fications on the test set of DB2 drops from 15.2 % with-

out cleaning to 10.5 % after removing meaningless and
ambiguous patterns.

Better performance has been achieved with both
databases using multilayer neural networks or other
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classification functions with higher capacity than linear
subdividing planes, Tests with polynomial classifiers of
order g, for which K(x,x’) = (x-x' + 1)¢, give the
following error rates and average number of support-
ing patterns per hypersurface, <m>. This average is
computed as the total number of supporting patterns
divided by the number of decision functions. Patterns
that support more than one hypersurface are counted
only once in the total. For comparison, the dimension
N of -space is also listed.

DB1 DB2
q error  <m> error <m> N
1 (linear) || 3.2% 36 | 10.5% 97 256
2 15% 441 58% 80| 3104
3 1.7% 50| 52% 79| 8.107
4 4.9% 721 4.10°
5 5.2% 89 | 11012

The results obtained for DB2 show a strong decrease
of the number of supporting patterns from a linear to
a third order polynomial classification function and an
equivalently significant decrease of the error rate. Fur-
ther increase of the order of the polynomial has little ef-
fect on either the number of supporting patterns or the
performance, unlike the dimension of ¢-space, N, which
increases exponentially. The lowest error rate, 4.9% is
obtained with a forth order polynomial and is slightly
better than the 5.1 % reported for a five layer neural net-
work with a sophisticated architecture [CBD*90], which
has been trained and tested on the same data.

In the above experiment, the performance changes dras-
tically between first and second order polynormials. This
may be a consequence of the fact that maximum VC-
dimension of an g-th order polynomial classifier is equal
to the dimension n of the patterns to the g-th power
and thus much larger than ». A more gradual change
of the VC-dimension is possible when the function K is
chosen to be a power series, for example

K(x,x)=exp(yx-x) — L

(21)

In this equation the parameter - is used to vary the VC-
dimension gradually. For small values of v, equation
21 approaches a linear classifier with VC-dimension at



Figure 4: Decision boundaries for maximum margin classifiers with second order polynomial decision rule K(x,x’} =
(x- x’ + 1)? (left) and an exponential RBF A(x,x’) = exp(—||x — x’||/2) (middle). The rightmost picture shows the
decision boundary of & two layer neural network with two hidden units trained with backpropagation.

most equal to the dimension n of the patterns plus one.
Experiments with database DBI lead o a slightly bet-
ter performance than the 1.5 % obtained with a second
order polynomial classifier:

When K(x,x’) is chosen to be the hyperbolic tangent,
the resulting classifier can be inferpreted as a neural
network with one hidden layer with m hidden units. The
supporting patterns are the weights in the first layer,
and the coefficients a the weights of the second, linear
layer. The number of hidden units is chosen by the
training algorithm to maximize the margin between the
classes A and B. Substituting the hyperbolic tangent for
the exponential function did not lead to better results
in our experiments.

The importance of a suitable preprocessing to incorpo-
rate knowledge about the task at hand has been pointed
out by many researchers. In optical character recogni-
tion, preprocessings that introduce some invariance to
scaling, rotation, and other distortions are particularly
important [SLD92]. As in [GVB*92], smoothing is used
to achieve insensitivity to small distortions. The table
below lists the error on the test set for different amounts
of smoothing. A second order polynomial classifier was
used for database DB1, and a forth order polynomial for
DB2. The smoothing kernel is Gaussian with standard
deviation .

DBI DB2
e error <m> | error <m>
no smoothing [[ 1.5% 44 [ 49% 72
0.5 1.3% 41 | 46% 73
0.8 0.8% 36| 50% 79
1.0 0.3% 31| 60% 83
1.2 08% 31
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The performance improved considerably for DB1. For
DB2 the improvement is less significant and the opti-
mum was obtained for less smoothing than for DBI.
This is expected since the number of training patterns
in DB2 is much larger than in DB1 (7000 versus 600). A
higher performance gain can be expected for more selec-
tive hints than smoothing, such as invariance to small
rotations or scaling of the digits [SLD92].

Better performance might be achieved with other sim-
ilarity functions K (x,x'}. Figure 4 shows the decision
boundary obtained with a second order polynomial and
a radial basis function (RBF) maximum margin classi-
fier with K(x,x') = exp(—|Jx — x'||/2). The decision
boundary of the polynomial classifier is much closer to
one of the two classes. This is a consequence of the non-
linear transform from ¢-space to x-space of polynomials
which realizes a position dependent scaling of distance.
Radial Basis Functions do not exhibit this probiem. The
decision boundary of a two layer neural network trained
with backpropagation is shown for comparison.

5 CONCLUSIONS

Maximizing the margin between the class boundary
and training patterns is an alternative to other train-
ing methods optimizing cost functions such as the mean
squared error. This principle is equivalent to minimiz-
mg the maximum loss and has a number of important
features. These include automatic capacity tuning of
the classification function, extraction of a small num-
ber of supporting patterns from the training data that
are relevant for the classification, and uniqueness of the
solution. They are exploited in an efficient learning al-
gorithm for classifiers linear in their parameters with
very large capacity, such as high order polynomial or
RBF classifiers. Key is the representation of the deci-
sion function in a dual space which is of much lower
dimensionality than the feature space.

The efficiency and performance of the algorithm have
been demonstrated on handwritten digit recognition



problems. The achieved performance matches that of
sophisticated classifiers, even though no task specific
knowledge has been used. The training algorithm is
polynomial in the number of training patterns, even
in cases when the dimension of the solution space (-
space) is exponential or infinite. The training time in
all experiments was less than an hour on a workstation.
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5.1 The Nearest Neighbour Classifier

Notice that I did not call this chapter “Distance Based Models’. In this chap-
ter we're going to quickly deal with a very simple method for performing good
classification, that actually avoids building any model at all. In fact, it has no
learning algorithm either. The advantage of this, as we will see, is that it can be
a very accurate way of classifying things, though it can be very computationally
intensive.

Let’s take a simple dataset :

x1 Zo y 1907

428 1719 | 0 180} *

476 1823 | 0 T 170, o °

45.0 165.0 | 0 2 ° x

60.0 175.0 | 0 z 1% ° X

63.0 160.0 | 0 3 150

85.0 162.1 | 1 120l X

98.7 157.6 | 1

93.6 138.8 | 1 130

87.9 1427 | 1 120 : ‘ ‘ ‘
92.8 1545 | 1 20 40 X ?veeight?r?kg) 100 120

And we get a testing example to classify, of x = {70,160}. The algorithm we
will use is called the ‘nearest neighbour’ approach, and is simply this:

Nearest Neighbour Classification

for each testing example x, do

Find the most similar training example

Predict the x to have the same label as that example.
end for

If you locate {70,160} in the right hand scatterplot, you’ll notice its closest
neighbour is a blue dot, so our predicted label will be § = 0. It seems too
simple, doesn’t it? The classification method is just: find the most similar
looking thing you’ve seen before, and assume the new thing has the same label
as that! The part I've left unspecified is how to quantify the “similarity” of two
examples. One way (we’ll see an alternative later) to do this is by measuring
the Fuclidean distance between the points. If you are unfamiliar with this, you
should revise an old textbook on trigonometry, perhaps Pythagoras’ Theorem,
which is illustrated in figure 5.1.
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Figure 5.1: Pythagoras’ Theorem shows us that here, ¢> = a® 4 b2, so therefore
the length of the hypotenuse here is ¢ = /42 + 32. ‘Euclidean’ distance is the
generalisation of this to d dimensions where the diagram shows the case of d = 2.

For two points with d features, x = {z1,...,2zq}, and x' = {24, ...,2,}, the
Euclidean distance between them is,

distance(x,x) =

If we had a testing datapoint x’ = {70,160}, we can measure the distance
from this to each of our training data points:

1 To y | distance(x,x’)
42.8 1719 0 | 29.69
47.6 182.3 0 31.61
45.0 165.0 0 | 25.49
60.0 175.0 O 18.03
63.0 160.0 O 7.00
85.0 162.1 1 10.21
98.7 1576 1 28.8
93.6 1388 1 31.7
87.9 1427 1 24.89
92.8 154.5 1 23.45

The closest datapoint is the fifth one, x = {63,160}, which happens to be
class y = 0, therefore we will predict § = 0 as well. A simple extension of
nearest neighbour classification is the k-Nearest Neighbour classifier, which is:

k-Nearest Neighbour Classification

for each testing example x, do

Find the k£ most similar training examples

Predict the x to be whatever the most common label is, among those k.
end for
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SELF-TEST
\iu"h, 3 W What will the prediction, g, be with the k-nn when
k = 3?7 What about when k£ = 57 ... Or, what
“ ) about the case of £ = 47 Does this last one tell you
[

anything about sensible choices for k?

Feature 2
Feature 2

Feature 1 Feature 1

Figure 5.2: k-nn boundaries drawn for k = 1 (left) and for k¥ = 15 (right). A
very small value of k tends to over fit the training data, making very complex

decision boundaries. A very large value tends to draw smoother boundaries,
but tend to underfit the data.

5

Feature 2

Feature 1

Figure 5.3: The same problem, but boundary drawn for k¥ = 7. This medium

value of k = 7 (for this problem) turned out to give a good trade-off and fitted
the data well.
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5.2 Handling Categorical Data

The k-NN is a very powerful, albeit computationally intensive, method of clas-
sification. The distance measure we discussed, Euclidean, is only one of many
you could possibly use within the same framework. For example, what if
our data was not real valued quantities such as height in centimetres, but
categorical data—we might have a variable that takes on values from a set
{England, Ireland, Scotland} as the place where someone lives. In this case, a
more appropriate measure is the Hamming distance:

d
hamming(x,x’) = Zé(:ﬂj # ). (5.2)

j=1
where § is the indicator function, returning 1 if its argument is true, or false
otherwise. This effectively counts the number of non-equal entries in the two
examples. In the more complex cases, our data may potentially be a mix of
continuous and categorical data, in which case we may have to hybridise the

two, having mized distance of some Euclidean and some Hamming.

5.3 Comparison of k-NN to other Models

k-NN in it’s simplest form can be very computationally intensive. Just think
about what had to happen to calculate what the nearest neighbour to a point
was. In the distance measurement, there are 2d additions, d multiplies, and a
square root, and that’s just for distance to a single training point. This would
be repeated for every point, then the closest k& would have to be found, before
a prediction can be made. If we compare this to the perceptron, or logistic
regression (just d multiplies and d additions to get a prediction) it is far more
computationally intensive.

Modifications, like the condensed k-nn, and good data structures like oct-
trees, can improve performance, but are not covered in this course. Something
to remember is that k-NN can be severely affected by the scaling of the features,
and the presence of irrelevant features.

5.4 What you should know by now

You should be able to say what effect the value of k has on the complexity of
the decision boundary. You should also be able to state at least 1 advantage
and at least 1 disadvantage of the k-nn classification method, in comparison to
other models we have met so far.
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1 . Training set 2 . Test point arrives
. x | . x
. x . %
% 2 x
. g i ; . ¢ 0 x
. .
e x x = X x
. .
x x
7% 7T0%

3 Find closest
4 . Classify as the same! 4 training point
T o x . x
1T e x . x
® x
< . x x 4 4 x x
% N
% x

Figure 5.4: Stages of nearest neighbour classification. It’s that simple!
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6.1 From Decision Stumps... to Decision Trees

Recall the definition of a decision stump back in subsection 2.1.2, and imagine
we have the following 1-dimensional problem.

TOCOPR IR0~

10 20 30 40 50 60

The red crosses are label y = 1, and blue dots y = 0. With this non-linearly
separable data, we decide to fit a decision stump. Our model has the form:

if x >t then g=1 else §=0 (6.1)

SELF-TEST
W Where is an optimal decision stump threshold for

b, 5
i the data and model above? Draw it into the dia-
“ Q gram above. Hint: you should find that it has a
. classification error rate of about 0.364.
If you locate the optimal threshold for this model, you will notice that it com-
mits some errors, and as we know this is because it is a non-linearly separable
problem. A way of visualising the errors is to remember the stump splits the

data in two, as shown below. On the left ‘branch’, we predict § = 0, and on the
right, g = 1.

x>t ?
no es
§=0 / \ j=1
27.1
105 2% 301 ”:
141 % :
42.0 3¢
170 @
470
210 @ 573 @
B2 0 590 @

Figure 6.1: The decision stump splits the data.

However, if we choose a different threshold of ¢t = 50, and use a stump that
makes the decision the opposite way round, i.e. if x >t theny =0 else y =1,
then this stump will have a better minimum error, that is 0.273. This, combined
with fig 6.1, shows a way for us to make an improved stump model.
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Our improved decision stump model, for a given threshold ¢, is:

Set Yrignt to the most common label in the (> ¢) subsample.

Set Yie st to the most common label in the (< t) subsample.

if x >t then
predict § = Yright
else
predict § = Yiert
endif

71

The learning algorithm would be the same, simple line-search to find the opti-
mum threshold that minimises the number of mistakes. So, our improved stump
model works by thresholding on the training data, and predicting a test dat-
apoint label as the most common label observed in the training data subsample.

Even with this improved stump, though, we are still making some errors.

There is in principle no reason why we can’t fit another decision stump (or
indeed any other model) to these data sub-samples. On the left branch data

sub-sample, we could easily pick an optimal threshold for a stump, and the same
for the right. Notice that the sub-samples are both linearly separable, therefore

we can perfectly classify them with the decision stump. The result! of doing

this is the following model, which is an example of a decision tree:

x>25 7

x>16 ? x>50 ?
no/\yes no/\yes
« N « Ny
j-1 ;

A

y=0 y= y=0

Figure 6.2: A decision tree for the toy 1d problem.

1By this point I hope you’ve figured out that the optimal threshold for the toy problem
was about « = 25. Several other thresholds (in fact an infinity of them between 23.2 and 27.1)

would have got the same error rate of 4/11, but we chose one arbitrarily.
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Just as a decision stump is a rule, a decision tree is a nested set of rules. The
one above can be written as:

if x > 25 then

if £ > 50 then y =0; else y=1; endif
else

if x> 16 then §y =0; else §y=1; endif
endif

As you might expect at this point, a learning algorithm to construct this tree
automatically from the data will be a recursive algorithm. If you are out of
practice with the concept of recursion, I suggest you revisit your old computer
science books, as it will not be covered on this module.

The algorithm, below, is called with BUILDTREE(subsample, maxdepth),
where subsample is the dataset (feature and labels), and maxdepth is the max-
imum allowable depth that you want the tree to grow to. The base case termi-
nates the algorithm when this depth is reached. The algorithm therefore returns
a tree with maximum depth less than or equal to this.

Decision Tree Learning Algorithm (sometimes called “ID3”)

1: function BUILDTREE( subsample, depth )

2

3 //BASE CASE:

4 if (depth == 0) OR (all examples have same label) then
5: return most common label in the subsample

6 end if

7

8 //RECURSIVE CASE:

9: for each feature do

10: Try splitting the data (i.e. build a decision stump)
11: Calculate the cost for this stump

12: end for

13: Pick feature with minimum cost

14:

15: Find left/right subsamples

16: Add left branch < BUILDTREE( leftSubSample, depth — 1)
17: Add right branch + BUILDTREE( rightSubSample, depth — 1)
18:

19: return tree

20:

21: end function
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The reason for restricting the depth is the following. As we split the data
more times (i.e. build a deeper tree) the data subsamples become smaller and
smaller. Eventually, we will be trying to split the data when just 2 or 3 examples
will be in the subsample. If we split at this point we will be making new nested
rules for these few examples, which may be outliers, just noise in the data, and
not really important. This causes overfitting to those few examples. We can OVERFITTING
therefore also implement similar depth restrictions by altering the base case to:

//BASE CASE:

if (size of subsample < k) OR (all examples have same label) then
return most common label in the subsample

end if

where we have set a minimum of k examples in the subsample to generate a new
split. Different software packages use different implementations—some restrict
depth manually, and some restrict by a minimum subsample size.

6.2 Big Trees Overfit, Little Trees Underfit

We now know how to learn a decision tree. The only user-supplied parameter
is the maximum allowable depth of the tree. The reason for this is that larger
trees tend to be overfitted to the training data. A typical scenario is shown in
figure 6.2, where the testing error begins to rise, as the depth of the tree grows
too large.

starting to

overfit
testing —
error
\_'_l
optimal depth about here
1 2 3 4 5 6 7 8 9
tree depth

Figure 6.3: A typical scenario when choosing the right depth for a decision tree.
Too deep makes it overfit, and not deep enough makes it underfit. The optimal
depth is somewhere in between.
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6.3 Dealing with Categorical Data

So far, we have seen how problems can be solved by models based on geometric
principles, i.e. we were able to scatterplot the data and see what it looked like,
then apply models based on the geometry of the line y = mz+c. What happens
when geometry cannot be used? For example, how would you scatterplot the
data shown below?

Outlook Temperature Humidity Wind | Play Tennis?
Sunny Hot High Weak No
Sunny Hot High Strong No

Overcast Hot High Weak Yes

Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes

Rain Mild Normal Weak Yes
Sunny Mild Normal Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes
Rain Mild High Strong No

The task here is to give advice on whether it is a good idea to play tennis,
given the current weather conditions. This data does not correspond to our
intuition of plots on a 2d axis, separating it with a plane. We know that the
number ‘1’ comes before ‘2°, but does the value ‘Rain’ come before or after
‘Sunny’? We have so far been dealing with continuous data, for which SVMs
and other geometric classifiers are appropriate, but they cannot deal with the

CATEGORICAL categorical data above. Quite nicely, it turns out that decision trees can easily
DATA  deal with this sort of problem.
A tree that perfectly classifies all the training data is this one:

Outlook

OVERCAST

Humidity | |
HIGHARMAL STRONG WEAK

Figure 6.4: A Decision Tree: notice that the different paths down the tree
encode a set of if-then logical rules.

Once again, an answer for any given example is found by following a path
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down the tree, answering questions as you go. Each path down the tree encodes
an if-then rule. The full ruleset for this tree is:

if ( Outlook==sunny AND Humidity==high ) then NO
if ( Outlook==sunny AND Humidity==normal ) then YES
if ( Outlook==overcast ) then YES
if ( Outlook==rain AND Wind==strong ) then NO
if ( Outlook==rain AND Wind==weak ) then YES

Notice that this tree (or equivalently, the ruleset) can correctly classify every
example in the training data. This tree is our model, or, seen in another light,
the set of rules is our model. These viewpoints are equivalent. The tree was
constructed automatically (learnt) from the data, just as the parameters of our
linear models in previous chapters were learnt from algorithms working on the

data. Notice also that the model deals with scenarios that were not present in

the training data — for example the model will also give a correct response if we
had a completely never-before-seen situation like this:

Outlook Temperature Humidity Wind ‘ Play Tennis?

Overcast

Mild High Weak ‘ Yes

The tree can therefore deal with data points that were not in the training data.
If you remember from earlier chapters, this means the tree has good generalisa-
tion accuracy, or equivalently, it has not overfitted.

Let’s consider another possible tree, shown in figure 6.5. If you check, this
tree also correctly classifies every example in the training data. However, the
testing datapoint “overcast/mild/high/weak”, receives a classification of ‘NO’.
Whereas, in fact, as we just saw, the correct answer is YES. This decision tree
made an incorrect prediction because it was overfitted to the training data.

As you will remember, we can never tell for sure whether a model is overfitted
until it is evaluated on some testing data. However, with decision trees, a strong
indicator that they are overfitted is that they are very deep, that is the rules
are very fine-tuned to conditions and sub-conditions that may just be irrelevant
facts. The smaller tree just made a simple check that the outlook was overcast,
whereas the deeper tree expanded far beyond this simple rule.

Lo, S8

o)

SELF-TEST
What prediction will the tree in figure 6.5 give for
this testing datapoint?

Outlook Temperature Humidity Wind
Sunny Mild High Strong

OVERFITTING
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cooL coot
LD COOL MILD
HIGH STRONG
HIGH NORMAL HIGH NOR""AL NORMAL HiGH NORMAL E
STRONG
STRONG
WEAK WEAK STRONG

Figure 6.5: An overfitted decision tree.

6.4 Measuring Information Gain

Now, remember to build this tree, we need to recursively split the data, and
measure the cost. In this section we’ll meet a new cost measure, called ‘infor-
mation gain’, which is sometimes preferable. If we had a dataset of examples:

Ty T2 | Y
1 1|1
1 010
1 1|1
1 0|1
0 010
0 010
0 010
0 0|1

If we split the data based on x1, we get a classification error rate of 0.25. If

we split the data based on x9, we get the same error rate, 0.25, so according to

SPLIT CRITERION this splitting criterion, there is no reason to prefer one over the other. However,

the second feature, x5, produces a ‘pure’ node, i.e. it has a classification error

on its dataset of 0, and has completely solved the sub-problem it was assigned

by the recursive call, so is arguably preferable in practical situations. There is

INFORMATION an alternative split criterion we can use, called the information gain, also known

GAIN' a5 the mutual information. The information gain for z; is I(X1;Y) = 0.1887,

MUTUAL oo} oreas I(X5;Y) = 0.3113, telling us that we should prefer zo, which is the

INFORMATION .

split that generated the pure node.
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We will now see how to calculate this for the tennis data we saw earlier. Let’s
see what it looks like to split the data into subsamples, based on the “wind”
feature.

Wind?

Stron eak

Outlook Temp Humid Wind |Play? Outlook Temp Humid Wind | Play?
2 Sunny Hot High Strong| No 1 Sunny Hot High  Weak No
6 Rain Cool Normal Strong| No 3 | Overcast  Hot High  Weak [ Yes
7 | Overcast Cool Normal Strong| Yes 4 Rain Mild  High  Weak | Yes
11| Sunny Mild Normal Strong| Yes 5 Rain Cool Normal Weak | Yes
12| Overcast Mild  High Strong| Yes 8 | Sunny  Mild High Weak | No
14| Rain Mild High Strong| No 9 | Sunny  Cool Normal Weak [ Yes

10 Rain Mild Normal Weak Yes

13 | Overcast Hot Normal Weak Yes

3 examples say yes, 3 say no.
6 examples say yes, 2 say no.

From the original 14 examples, 9 have the answer YES, and 5 have the answer
NO. We regard this distribution of yes/no as the ‘default’ information, that is,
if we are given no further data on what the weather is like, then the best anyone
could do is predict “yes”, as this is the majority situation among the data.

However, by splitting our training data up based on what the “wind” fea-
ture said, it has changed the distribution of “yes” and “no” answers. Now, if
the wind is weak, we should be more confident (see probabilities below) of the
decision to play tennis. If the wind is strong, we see there is a 50 : 50 split, so
we have become more confident that ‘no’ is the correct answer.

Before the split : 9 ’yes’, 5 'no’, ......... p('yes’) = 2 ~ 0.64

. ) ) [N _ 3 _
On the left branch : 3 ’yes’, 3 'no’, ....... p('yes’) =5 =05
On the right branch : 6 ’yes’, 2 'no, ...... p('yes’) =5 =0.75

Remember... p('no’) =1 — p('yes’)

“Splitting” the data on the wind feature has provided us with some information.
We can make a slightly more well informed decision if we use this information.
Which one of the features would give us the most information?. To answer
this, we must have a way of measuring the information we would gain as a score
for each feature, then we can pick the feature with the highest score.
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Entropy - a measure of information

Think of a coin flip. How “random” is a coin flip? One might say a fair coin,
equally balanced for heads/tails, would be “completely” random. On the other
hand, a biased coin, that is one that would come up more often as tails than as
heads, is “less random”.

Probability Distribution for a Fair Coin Probability Distribution for a Biased Coin
1
08
= 0.6 =
= z
204 =
0.2}

One might imagine, that if we learnt that the distribution was biased, we
have more information, that is with less randomness, we got more information.
And conversely, when we know nothing at all about the coin, we must presume
it is completely random, so with more randomness, we have less information.
The entropy is a mathematical expression for quantifying this randomness. The
entropy of a variable X is given by.

H(X)= - p(z)logp() (6.2)

zeX

where the sum is over all possible states that the variable X could possibly take.
The log is base 2, giving us units of measurement ’bits’. In the coin example,
we have:

H(X) = —(p(head) log p(head) + p(tail) 10gp(tail)>
- —(0.510g 0.5 + 0.5 log 0.5)
= —((-05) +(-0.5)) =1

So the entropy, or the “amount of randomness”, is 1 bit. Try to work it out
below, for the biased coin.
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SELF-TEST
L\_L:"l‘;, 3 W Calculate the entropy of a two-valued feature, i.e.

é z € {0,1}, with p(z = 1) = 0.6.

Measuring the Information Gain of a Feature

Now we know how to measure the amount of randomness (or conversely the
amount of information) in a probability distribution, we can use this to measure
the gain from a particular feature. What are we measuring the randomness of?
The variable telling us whether we should be playing tennis or not (YES/NO).
We will call this variable T' (for tennis), which can take on two values T' = yes
and T = no. Remembering the figures from earlier, using the wind feature:

Before the split : 9 ‘yes’, 5 ‘no’, giving us probabilities: p(yes) = 1—94, and
p(no) = 1—54. And so the entropy is,
9 9 5 5
H(T) = —(ﬂ log — + = log H) ~ 0.94029 (6.3)
After the split on the left branch (when the wind is strong), there were 3
examples with yes, and 3 examples of no. The entropy is,

3 3 3 3
H(T|W = strong) = — (% log = + S log = ) =1 4
(T\W = strong) 60g6+60g6 (6.4)
After the split on the right branch (when the wind is weak), there were 6
examples with yes, and 2 examples of no. Now it’s your turn to work this one
out in the space below.

SELF-TEST

Lo, S/

é Calculate H(T|W = weak).

D
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Once we have calculated the entropy down each branch, H(T|W = strong)
and H(T|W = weak), we take a weighted average of the two, dependent on how
many examples totally made it down into each split. In this case, there were
3+ 3 = 6 examples totally in the strong split (left), and 6 + 2 = 8 examples in
the weak split (right). The average of the two is:

6 8
648 T5r8
= 0.42857 4 0.57142 x H(T|W = weak)

0.42857 4+ 0.57142 x
0.89215 (6.5)

H(T|W)

H(T|\W = strong) H(T|W = weak)

Make sure you work out the value of H(T|W = weak), and plug it into the
above to verify it. Note I have rounded the figures above, so as long as you
are accurate to within 3 decimal places, that’s fine. Now, we know the entropy
before the split, and the average entropy after the split. To calculate the
information gain we simple take the difference of the two:

I(T;W) = H(T)—- H(T|W)
0.94029 — 0.89215 = 0.04814

This tells us the information gain (in bits) of using “wind” to split on is 0.04814.
That’s not very much! The maximum possible gain is when H(T|W) = 0, so
here the maximum possible gain would be 0.94029. This is the case when the
split has removed all uncertainty. This will be different for every problem - it
depends what H(T) was in the first place. If H(T) was maximal before the
split, then it means there was complete uncertainty — a uniform distribution
over all the possible values of T'. It turns out that the maximal possible value
of H(T) is log(|T|), the logarithm of the number of possible values.

In summary, we calculate the gain by the following simple steps:

1. Work out the entropy before the data split.
2. Work out the weighted average entropy after the split.
3. Take the difference of these.

For the original 14 examples, the gain Outloook and Temperature is:

Gain(outlook) = 0.94029 — 0.6935 = 0.2467
Gain(temperature) = 0.94029 — 0.911 = 0.029

So far, it looks like Outlook has the maximum gain, at =~ 0.2467. I will leave
the humidity feature for you to work out yourself. Remember again that above
I have rounded the figures in the calculations, so 3 decimal places is sufficient.
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6.5 What you should know by now

You should be able to calculate the entropy for a binary feature, and also be able
to calculate the information gain for a feature, given a class label. You should
also know why and how the Id3 algorithm works, including the termination
condition (base cases). You should know how overfitting manifests in trees, and
how to control it.
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7.1 Evaluating Model Performance

So far, we have been evaluating our models by simply a count of how many
errors they make, and maybe averaging this via cross-validation. In fact, this is
quite naive, and there are many more sophisticated ways to evaluate the per-
formance of a model. In this chapter you will engage in your own reading of
a published article on Receiver Operator Characteristics, also known as ROC
analysis. Take note, you may well encounter machine learning terminology that
is slightly different to that which we have used so far—you should get used to
this, as different fields (e.g. statistics, data mining, bioinformatics) use differ-
ent terms, but in fact all mean the same thing. If you get lost, chat to your
colleagues or do some Googling to see what the terms mean.

Sections 1-3 are required reading and will be ezaminable. Sections 4 onward
are optional, but you may well like to read up on them for your own curiosity,
or to make use of in your mini-projects.
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1. Introduction

A receiver operating characteristics (ROC) graph is a
technique for visualizing, organizing and selecting classifi-
ers based on their performance. ROC graphs have long
been used in signal detection theory to depict the tradeoff
between hit rates and false alarm rates of classifiers (Egan,
1975; Swets et al., 2000). ROC analysis has been extended
for use in visualizing and analyzing the behavior of diag-
nostic systems (Swets, 1988). The medical decision making
community has an extensive literature on the use of ROC
graphs for diagnostic testing (Zou, 2002). Swets et al.
(2000) brought ROC curves to the attention of the wider
public with their Scientific American article.

One of the earliest adopters of ROC graphs in machine
learning was Spackman (1989), who demonstrated the
value of ROC curves in evaluating and comparing algo-
rithms. Recent years have seen an increase in the use of
ROC graphs in the machine learning community, due in
part to the realization that simple classification accuracy
is often a poor metric for measuring performance (Provost
and Fawcett, 1997; Provost et al., 1998). In addition to
being a generally useful performance graphing method,
they have properties that make them especially useful for

E-mail addresses: tfawcett@acm.org, tom.fawcett@gmail.com

0167-8655/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.patrec.2005.10.010

domains with skewed class distribution and unequal clas-
sification error costs. These characteristics have become
increasingly important as research continues into the areas
of cost-sensitive learning and learning in the presence of
unbalanced classes.

ROC graphs are conceptually simple, but there are some
non-obvious complexities that arise when they are used in
research. There are also common misconceptions and pit-
falls when using them in practice. This article attempts to
serve as a basic introduction to ROC graphs and as a guide
for using them in research. The goal of this article is to
advance general knowledge about ROC graphs so as to
promote better evaluation practices in the field.

2. Classifier performance

We begin by considering classification problems using
only two classes. Formally, each instance 7 is mapped to
one element of the set {p,n} of positive and negative class
labels. A classification model (or classifier) is a mapping
from instances to predicted classes. Some classification
models produce a continuous output (e.g., an estimate of
an instance’s class membership probability) to which differ-
ent thresholds may be applied to predict class membership.
Other models produce a discrete class label indicating only
the predicted class of the instance. To distinguish between
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Fig. 1. Confusion matrix and common performance metrics calculated from it.

the actual class and the predicted class we use the labels
{Y, N} for the class predictions produced by a model.

Given a classifier and an instance, there are four possible
outcomes. If the instance is positive and it is classified as
positive, it is counted as a true positive; if it is classified
as negative, it is counted as a false negative. If the instance
is negative and it is classified as negative, it is counted as a
true negative; if it is classified as positive, it is counted as a
false positive. Given a classifier and a set of instances (the
test set), a two-by-two confusion matrix (also called a con-
tingency table) can be constructed representing the disposi-
tions of the set of instances. This matrix forms the basis for
many common metrics.

Fig. 1 shows a confusion matrix and equations of several
common metrics that can be calculated from it. The num-
bers along the major diagonal represent the correct deci-
sions made, and the numbers of this diagonal represent
the errors—the confusion—between the various classes.
The true positive rate' (also called hit rate and recall) of a
classifier is estimated as

Positives correctly classified
Total positives

tp rate =~
The false positive rate (also called false alarm rate) of the
classifier is

Negatives incorrectly classified
Total negatives

fp rate =

Additional terms associated with ROC curves are

sensitivity = recall
True negatives
False positives + True negatives
=1— fp rate
positive predictive value = precision

specificity =

! For clarity, counts such as TP and FP will be denoted with upper-case
letters and rates such as tp rate will be denoted with lower-case.

3. ROC space

ROC graphs are two-dimensional graphs in which #p
rate is plotted on the Y axis and fp rate is plotted on the
X axis. An ROC graph depicts relative tradeoffs between
benefits (true positives) and costs (false positives). Fig. 2
shows an ROC graph with five classifiers labeled A through
E.

A discrete classifier is one that outputs only a class label.
Each discrete classifier produces an (fp rate,tp rate) pair
corresponding to a single point in ROC space. The classifi-
ers in Fig. 2 are all discrete classifiers.

Several points in ROC space are important to note. The
lower left point (0,0) represents the strategy of never issu-
ing a positive classification; such a classifier commits no
false positive errors but also gains no true positives. The
opposite strategy, of unconditionally issuing positive classi-
fications, is represented by the upper right point (1, 1).

The point (0, 1) represents perfect classification. D’s per-
formance is perfect as shown.

Informally, one point in ROC space is better than
another if it is to the northwest (zp rate is higher, fp rate
is lower, or both) of the first. Classifiers appearing on the
left-hand side of an ROC graph, near the X axis, may be

7
D d
7
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7
C,’
2 A ’
S06— ¢ L7
= ,
=} /7
0.4 — s
Q 7
2 s
= L7
02— d E
7
7
7
7
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0 0.2 0.4 0.6 0.8 1.0

False positive rate

Fig. 2. A basic ROC graph showing five discrete classifiers.
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thought of as ““conservative”: they make positive classifica-
tions only with strong evidence so they make few false posi-
tive errors, but they often have low true positive rates as
well. Classifiers on the upper right-hand side of an ROC
graph may be thought of as “liberal”: they make positive
classifications with weak evidence so they classify nearly
all positives correctly, but they often have high false posi-
tive rates. In Fig. 2, A is more conservative than B. Many
real world domains are dominated by large numbers of
negative instances, so performance in the far left-hand side
of the ROC graph becomes more interesting.

3.1. Random performance

The diagonal line y = x represents the strategy of ran-
domly guessing a class. For example, if a classifier ran-
domly guesses the positive class half the time, it can be
expected to get half the positives and half the negatives
correct; this yields the point (0.5,0.5) in ROC space. If it
guesses the positive class 90% of the time, it can be
expected to get 90% of the positives correct but its false
positive rate will increase to 90% as well, yielding
(0.9,0.9) in ROC space. Thus a random classifier will pro-
duce a ROC point that ““slides” back and forth on the dia-
gonal based on the frequency with which it guesses the
positive class. In order to get away from this diagonal into
the upper triangular region, the classifier must exploit some
information in the data. In Fig. 2, C’s performance is virtu-
ally random. At (0.7,0.7), C may be said to be guessing the
positive class 70% of the time.

Any classifier that appears in the lower right triangle
performs worse than random guessing. This triangle is
therefore usually empty in ROC graphs. If we negate a
classifier—that is, reverse its classification decisions on
every instance—its true positive classifications become false
negative mistakes, and its false positives become true neg-
atives. Therefore, any classifier that produces a point in
the lower right triangle can be negated to produce a point
in the upper left triangle. In Fig. 2, E performs much worse
than random, and is in fact the negation of B. Any classifier
on the diagonal may be said to have no information about
the class. A classifier below the diagonal may be said to
have useful information, but it is applying the information
incorrectly (Flach and Wu, 2003).

Given an ROC graph in which a classifier’s performance
appears to be slightly better than random, it is natural to
ask: ““is this classifier’s performance truly significant or is
it only better than random by chance?”” There is no conclu-
sive test for this, but Forman (2002) has shown a method-
ology that addresses this question with ROC curves.

4. Curves in ROC space

Many classifiers, such as decision trees or rule sets, are
designed to produce only a class decision, i.e., a Y or N
on each instance. When such a discrete classifier is applied
to a test set, it yields a single confusion matrix, which in

turn corresponds to one ROC point. Thus, a discrete clas-
sifier produces only a single point in ROC space.

Some classifiers, such as a Naive Bayes classifier or a
neural network, naturally yield an instance probability or
score, a numeric value that represents the degree to which
an instance is a member of a class. These values can be
strict probabilities, in which case they adhere to standard
theorems of probability; or they can be general, uncali-
brated scores, in which case the only property that holds
is that a higher score indicates a higher probability. We
shall call both a probabilistic classifier, in spite of the fact
that the output may not be a proper probability.>

Such a ranking or scoring classifier can be used with a
threshold to produce a discrete (binary) classifier: if the
classifier output is above the threshold, the classifier pro-
duces a Y, else a V. Each threshold value produces a differ-
ent point in ROC space. Conceptually, we may imagine
varying a threshold from —oo to +oo and tracing a curve
through ROC space. Computationally, this is a poor way
of generating an ROC curve, and the next section describes
a more efficient and careful method.

Fig. 3 shows an example of an ROC “curve” on a test
set of 20 instances. The instances, 10 positive and 10 nega-
tive, are shown in the table beside the graph. Any ROC
curve generated from a finite set of instances is actually a
step function, which approaches a true curve as the number
of instances approaches infinity. The step function in Fig. 3
is taken from a very small instance set so that each point’s
derivation can be understood. In the table of Fig. 3, the
instances are sorted by their scores, and each point in the
ROC graph is labeled by the score threshold that produces
it. A threshold of +oo produces the point (0,0). As we
lower the threshold to 0.9 the first positive instance is clas-
sified positive, yielding (0,0.1). As the threshold is further
reduced, the curve climbs up and to the right, ending up
at (1,1) with a threshold of 0.1. Note that lowering this
threshold corresponds to moving from the “‘conservative”
to the “liberal” areas of the graph.

Although the test set is very small, we can make some
tentative observations about the classifier. It appears to
perform better in the more conservative region of the
graph; the ROC point at (0.1,0.5) produces its highest
accuracy (70%). This is equivalent to saying that the classi-
fier is better at identifying likely positives than at identify-
ing likely negatives. Note also that the classifier’s best
accuracy occurs at a threshold of >0.54, rather than at
>0.5 as we might expect with a balanced distribution.
The next section discusses this phenomenon.

4.1. Relative versus absolute scores

An important point about ROC graphs is that they mea-
sure the ability of a classifier to produce good relative

2 Techniques exist for converting an uncalibrated score into a proper
probability but this conversion is unnecessary for ROC curves.
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Fig. 3. The ROC “curve” created by thresholding a test set. The table
shows 20 data and the score assigned to each by a scoring classifier. The
graph shows the corresponding ROC curve with each point labeled by the
threshold that produces it.

instance scores. A classifier need not produce accurate, cal-
ibrated probability estimates; it need only produce relative
accurate scores that serve to discriminate positive and neg-
ative instances.

Consider the simple instance scores shown in Fig. 4,
which came from a Naive Bayes classifier. Comparing the
hypothesized class (which is Y if score > 0.5, else V) against
the true classes, we can see that the classifier gets instances
7 and 8 wrong, yielding 80% accuracy. However, consider
the ROC curve on the left side of the figure. The curve rises
vertically from (0,0) to (0,1), then horizontally to (1,1).
This indicates perfect classification performance on this test
set. Why is there a discrepancy?

The explanation lies in what each is measuring. The
ROC curve shows the ability of the classifier to rank the
positive instances relative to the negative instances, and it

is indeed perfect in this ability. The accuracy metric
imposes a threshold (score > 0.5) and measures the result-
ing classifications with respect to the scores. The accuracy
measure would be appropriate if the scores were proper
probabilities, but they are not. Another way of saying this
is that the scores are not properly calibrated, as true prob-
abilities are. In ROC space, the imposition of a 0.5 thres-
hold results in the performance designated by the circled
“accuracy point’ in Fig. 4. This operating point is subop-
timal. We could use the training set to estimate a prior for
p(p) = 6/10 = 0.6 and use this as a threshold, but it would
still produce suboptimal performance (90% accuracy).

One way to eliminate this phenomenon is to calibrate
the classifier scores. There are some methods for doing this
(Zadrozny and Elkan, 2001). Another approach is to use
an ROC method that chooses operating points based on
their relative performance, and there are methods for doing
this as well (Provost and Fawcett, 1998, 2001). These latter
methods are discussed briefly in Section 6.

A consequence of relative scoring is that classifier scores
should not be compared across model classes. One model
class may be designed to produce scores in the range
[0, 1] while another produces scores in [—1,+1] or [1,100].
Comparing model performance at a common threshold will
be meaningless.

4.2. Class skew

ROC curves have an attractive property: they are insen-
sitive to changes in class distribution. If the proportion of
positive to negative instances changes in a test set, the
ROC curves will not change. To see why this is so, consider
the confusion matrix in Fig. 1. Note that the class distribu-
tion—the proportion of positive to negative instances—is
the relationship of the left (+) column to the right (—) col-
umn. Any performance metric that uses values from both
columns will be inherently sensitive to class skews. Metrics
such as accuracy, precision, lift and F score use values from
both columns of the confusion matrix. As a class distribu-
tion changes these measures will change as well, even if the
fundamental classifier performance does not. ROC graphs
are based upon #p rate and fp rate, in which each dimension
is a strict columnar ratio, so do not depend on class
distributions.

To some researchers, large class skews and large changes
in class distributions may seem contrived and unrealistic.
However, class skews of 10! and 10% are very common in
real world domains, and skews up to 10° have been
observed in some domains (Clearwater and Stern, 1991;
Fawcett and Provost, 1996; Kubat et al., 1998; Saitta and
Neri, 1998). Substantial changes in class distributions are
not unrealistic either. For example, in medical decision
making epidemics may cause the incidence of a disease to
increase over time. In fraud detection, proportions of fraud
varied significantly from month to month and place to
place (Fawcett and Provost, 1997). Changes in a manufac-
turing practice may cause the proportion of defective units
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Fig. 4. Scores and classifications of 10 instances, and the resulting ROC curve.

produced by a manufacturing line to increase or decrease.
In each of these examples the prevalence of a class may
change drastically without altering the fundamental char-
acteristic of the class, i.e., the target concept.

Precision and recall are common in information retrie-
val for evaluating retrieval (classification) performance
(Lewis, 1990, 1991). Precision-recall graphs are commonly
used where static document sets can sometimes be

assumed; however, they are also used in dynamic environ-
ments such as web page retrieval, where the number of
pages irrelevant to a query (N) is many orders of magni-
tude greater than P and probably increases steadily over
time as web pages are created.

To see the effect of class skew, consider the curves in
Fig. 5, which show two classifiers evaluated using ROC
curves and precision-recall curves. In Fig. 5a and b, the test
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Fig. 5. ROC and precision-recall curves under class skew. (a) ROC curves, 1:1; (b) precision-recall curves, 1:1; (¢c) ROC curves, 1:10 and (d) precision-

recall curves, 1:10.
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set has a balanced 1:1 class distribution. Graph 5c and d
shows the same two classifiers on the same domain, but
the number of negative instances has been increased 10-
fold. Note that the classifiers and the underlying concept
has not changed; only the class distribution is different.
Observe that the ROC graphs in Fig. 5a and c are identical,
while the precision-recall graphs in Fig. 5b and d differ sub-
stantially. In some cases, the conclusion of which classifier
has superior performance can change with a shifted
distribution.

4.3. Creating scoring classifiers

Many classifier models are discrete: they are designed
to produce only a class label from each test instance.
However, we often want to generate a full ROC curve from
a classifier instead of just a single point. To this end we
want to generate scores from a classifier rather than just
a class label. There are several ways of producing such
scores.

Many discrete classifier models may easily be converted
to scoring classifiers by ‘“looking inside” them at the
instance statistics they keep. For example, a decision tree
determines a class label of a leaf node from the proportion
of instances at the node; the class decision is simply the
most prevalent class. These class proportions may serve
as a score (Provost and Domingos, 2001). A rule learner
keeps similar statistics on rule confidence, and the confi-
dence of a rule matching an instance can be used as a score
(Fawecett, 2001).

Even if a classifier only produces a class label, an
aggregation of them may be used to generate a score.
MetaCost (Domingos, 1999) employs bagging to generate
an ensemble of discrete classifiers, each of which produces
a vote. The set of votes could be used to generate a
score.’

Finally, some combination of scoring and voting can be
employed. For example, rules can provide basic probability
estimates, which may then be used in weighted voting
(Fawcett, 2001).

5. Efficient generation of ROC curves

Given a test set, we often want to generate an ROC
curve efficiently from it. We can exploit the monotonicity
of thresholded classifications: any instance that is classified
positive with respect to a given threshold will be classified
positive for all lower thresholds as well. Therefore, we

3 MetaCost actually works in the opposite direction because its goal is to
generate a discrete classifier. It first creates a probabilistic classifier, then
applies knowledge of the error costs and class skews to relabel the
instances so as to “optimize” their classifications. Finally, it learns a
specific discrete classifier from this new instance set. Thus, MetaCost is not
a good method for creating a scoring classifier, though its bagging method
may be.

can simply sort the test instances decreasing by f scores
and move down the list, processing one instance at a time
and updating TP and FP as we go. In this way an ROC
graph can be created from a linear scan.

The algorithm is shown in Algorithm 1. TP and FP
both start at zero. For each positive instance we increment
TP and for every negative instance we increment FP. We
maintain a stack R of ROC points, pushing a new point
onto R after each instance is processed. The final output
is the stack R, which will contain points on the ROC
curve.

Let n be the number of points in the test set. This algo-
rithm requires an O(nlogn) sort followed by an O(n) scan
down the list, resulting in O(nlogn) total complexity.

Statements 7-10 need some explanation. These are
necessary in order to correctly handle sequences of equally
scored instances. Consider the ROC curve shown in Fig. 6.
Assume we have a test set in which there is a sequence of
instances, four negatives and six positives, all scored
equally by f. The sort in line 1 of Algorithm 1 does not
impose any specific ordering on these instances since their
f scores are equal. What happens when we create an
ROC curve? In one extreme case, all the positives end up
at the beginning of the sequence and we generate the “opti-
mistic” upper L segment shown in Fig. 6. In the opposite

Algorithm 1. Efficient method for generating ROC points
Inputs: L, the set of test examples; f{i), the probabilistic
classifier’s estimate that example 7 is positive; P and N, the
number of positive and negative examples.
Outputs: R, a list of ROC points increasing by fp rate.
Require: P> 0 and N> 0

I: Lgoreq < L sorted decreasing by f scores

2. FP— TP 0

33 R—{)

4. fi)rev — =X

Sii—1

6: while i < |Lsorieq| do

7. if fli) # fprev then

FP TP

&: push (W ,7) onto R

9: Jorev < fD)
10:  end if
11:  if Lgopeqlf] 1s a positive example then
12: TP — TP+ 1
13:  else /* i is a negative example */
14: FP — FP+1
15:  end if
16: i—i+1

17: end while
FP TP ..

18: push (,) onto R /* This is (1,1) */
N P

19: end




T. Fawcett | Pattern Recognition Letters 27 (2006) 861-874 867

1.0
Optimistic
/ /
0.8 — R
v /v
v / v
/

o] v /A-A Expected
<
=~ 0.6 — s/ .
2 ./ .
= s s
2}
2

0.4 —
g Pessimistic
—
H

0.2 —

’ | | | |

0 0.2 04 0.6 0.8 1.0

False positive rate

Fig. 6. The optimistic, pessimistic and expected ROC segments resulting
from a sequence of 10 equally scored instances.

extreme, all the negatives end up at the beginning of the
sequence and we get the “pessimistic”’ lower L shown in
Fig. 6. Any mixed ordering of the instances will give a dif-
ferent set of step segments within the rectangle formed by
these two extremes. However, the ROC curve should repre-
sent the expected performance of the classifier, which, lack-
ing any other information, is the average of the pessimistic
and optimistic segments. This average is the diagonal of the
rectangle, and can be created in the ROC curve algorithm
by not emitting an ROC point until all instances of equal f
values have been processed. This is what the f,., variable
and the if statement of line 7 accomplish.

Instances that are scored equally may seem unusual
but with some classifier models they are common. For
example, if we use instance counts at nodes in a decision
tree to score instances, a large, high-entropy leaf node
may produce many equally scored instances of both clas-
ses. If such instances are not averaged, the resulting ROC
curves will be sensitive to the test set ordering, and different
orderings can yield very misleading curves. This can be
especially critical in calculating the area under an ROC
curve, discussed in Section 7. Consider a decision tree con-
taining a leaf node accounting for n positives and m nega-
tives. Every instance that is classified to this leaf node will
be assigned the same score. The rectangle of Fig. 6 will be
of size 4y, and if these instances are not averaged this one
leaf may account for errors in ROC curve area as high
as Jpv.

6. The ROC convex hull

One advantage of ROC graphs is that they enable visual-
izing and organizing classifier performance without regard
to class distributions or error costs. This ability becomes very
important when investigating learning with skewed distribu-
tions or cost-sensitive learning. A researcher can graph the
performance of a set of classifiers, and that graph will remain

invariant with respect to the operating conditions (class skew
and error costs). As these conditions change, the region of
interest may change, but the graph itself will not.

Provost and Fawcett (1998, 2001) show that a set of
operating conditions may be transformed easily into a
so-called iso-performance line in ROC space. Two points
in ROC space, (FP,,TP;) and (FP,, TP,), have the same
performance if

TPZ—TPIZC(Y’n)p(n):m (1)
FP, —FP;  ¢(N,p)p(p)

This equation defines the slope of an iso-performance line.
All classifiers corresponding to points on a line of slope m
have the same expected cost. Each set of class and cost dis-
tributions defines a family of iso-performance lines. Lines
“more northwest” (having a larger TP-intercept) are better
because they correspond to classifiers with lower expected
cost. More generally, a classifier is potentially optimal if
and only if it lies on the convex hull of the set of points
in ROC space. The convex hull of the set of points in
ROC space is called the ROC convex hull (ROCCH) of
the corresponding set of classifiers.

Fig. 7a shows four ROC curves (A through D) and their
convex hull (labeled CH). D is not on the convex hull and is
clearly sub-optimal. B is also not optimal for any condi-
tions because it is not on the convex hull either. The convex
hull is bounded only by points from curves A and C. Thus,
if we are seeking optimal classification performance, classi-
fiers B and D may be removed entirely from consideration.
In addition, we may remove any discrete points from A and
C that are not on the convex hull.

Fig. 7b shows the A and C curves again with two explicit
iso-performance lines, o and f. Consider a scenario in
which negatives outnumber positives by 10 to 1, but false
positives and false negatives have equal cost. By Eq. (1)
m = 10, and the most northwest line of slope m =10 is o,
tangent to classifier A, which would be the best performing
classifier for these conditions.

Consider another scenario in which the positive and
negative example populations are evenly balanced but a
false negative is 10 times as expensive as a false positive.
By Eq. (1) m = 1/10. The most northwest line of slope 1/
10 would be line f3, tangent to classifier C. C is the optimal
classifier for these conditions.

If we wanted to generate a classifier somewhere on the
convex hull between A and C, we could interpolate
between the two. Section 10 explains how to generate such
a classifier.

This ROCCH formulation has a number of useful
implications. Since only the classifiers on the convex hull
are potentially optimal, no others need be retained. The
operating conditions of the classifier may be translated into
an iso-performance line, which in turn may be used to iden-
tify a portion of the ROCCH. As conditions change, the
hull itself does not change; only the portion of interest
will.
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Fig. 7. (a) The ROC convex hull identifies potentially optimal classifiers. (b) Lines « and f show the optimal classifier under different sets of conditions.

7. Area under an ROC curve (AUC)

An ROC curve is a two-dimensional depiction of classi-
fier performance. To compare classifiers we may want to
reduce ROC performance to a single scalar value represent-
ing expected performance. A common method is to calcu-
late the area under the ROC curve, abbreviated AUC
(Bradley, 1997; Hanley and McNeil, 1982). Since the
AUC is a portion of the area of the unit square, its value
will always be between 0 and 1.0. However, because ran-
dom guessing produces the diagonal line between (0,0)
and (1,1), which has an area of 0.5, no realistic classifier
should have an AUC less than 0.5.

The AUC has an important statistical property: the
AUC of a classifier is equivalent to the probability that
the classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative instance. This is

1.0

< o o
IS =N =

True positive rate

o
o

[ [ [ T
0 0.2 0.4 0.6 0.8 1.0
(a) False positive rate

equivalent to the Wilcoxon test of ranks (Hanley and
McNeil, 1982). The AUC is also closely related to the Gini
coefficient (Breiman et al., 1984), which is twice the area
between the diagonal and the ROC curve. Hand and Till
(2001) point out that Gini + 1 =2 x AUC.

Fig. 8a shows the areas under two ROC curves, A and
B. Classifier B has greater area and therefore better average
performance. Fig. 8b shows the area under the curve of a
binary classifier A and a scoring classifier B. Classifier A
represents the performance of B when B is used with a sin-
gle, fixed threshold. Though the performance of the two is
equal at the fixed point (A’s threshold), A’s performance
becomes inferior to B further from this point.

It is possible for a high-AUC classifier to perform worse
in a specific region of ROC space than a low-AUC classi-
fier. Fig. 8a shows an example of this: classifier B is gener-
ally better than A except at FPrate > 0.6 where A has a

0.8

o
o

True positive rate
<o
=~

0.2

0 0.2 0.4 0.6 0.8 1.0
(b) False positive rate

Fig. 8. Two ROC graphs. The graph on the left shows the area under two ROC curves. The graph on the right shows the area under the curves of a

discrete classifier (A) and a probabilistic classifier (B).
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Algorithm 2. Calculating the area under an ROC curve
Inputs: L, the set of test examples; f{i), the probabilistic
classifier’s estimate that example i is positive; P and N, the
number of positive and negative examples.
Outputs: 4, the area under the ROC curve.
Require: P> 0 and N> 0

I: Lgoreqa < L sorted decreasing by f scores

2. FP—TP 0
3: FPprey < TPprey +— 0
4: 40
5 fprev — =0
6: i1
7: while i < |Lgorieq| do
8: if f{i) # fprev then
9: A + A + TRAPEZOID_AREA(FP, FPpcy,
TP, TPre)
10: forew = )
11: FPpyey — FP
12: TPprey — TP
13:  end if
14: if i is a positive example then
15: TP — TP+ 1
16: else /* iis a negative example */
17: FP«— FP+1
18:  end if
190 i—i+1

20: end while

21: A +— A + TRAPEZOID_AREA(N, FP ey, N, TPpyey)

22: A« A/(Px N) [* scale from PXx N onto the unit
square */

3: end

1: function TRAPEZOID_AREA(X1, X2, Y1, Y2)

2: Base — | X1 — X2|

3: Heightyyy — (Y1 + Y2)/2

4: return Base X Height,,

5: end function

slight advantage. But in practice the AUC performs very
well and is often used when a general measure of predic-
tiveness is desired.

The AUC may be computed easily using a small modi-
fication of algorithm 1, shown in Algorithm 2. Instead of
collecting ROC points, the algorithm adds successive areas
of trapezoids to A. Trapezoids are used rather than rectan-
gles in order to average the effect between points, as
illustrated in Fig. 6. Finally, the algorithm divides 4 by
the total possible area to scale the value to the unit
square.

8. Averaging ROC curves

Although ROC curves may be used to evaluate classifi-
ers, care should be taken when using them to make conclu-
sions about classifier superiority. Some researchers have
assumed that an ROC graph may be used to select the best

classifiers simply by graphing them in ROC space and see-
ing which ones dominate. This is misleading; it is analo-
gous to taking the maximum of a set of accuracy figures
from a single test set. Without a measure of variance we
cannot compare the classifiers.

Averaging ROC curves is easy if the original instances
are available. Given test sets 77, 75,. .., T,, generated from
cross-validation or the bootstrap method, we can simply
merge sort the instances together by their assigned scores
into one large test set 7, We then run an ROC curve gen-
eration algorithm such as algorithm 1 on T, and plot the
result. However, the primary reason for using multiple test
sets is to derive a measure of variance, which this simple
merging does not provide. We need a more sophisticated
method that samples individual curves at different points
and averages the samples.

ROC space is two-dimensional, and any average is nec-
essarily one-dimensional. ROC curves can be projected
onto a single dimension and averaged conventionally, but
this leads to the question of whether the projection is
appropriate, or more precisely, whether it preserves charac-
teristics of interest. The answer depends upon the reason
for averaging the curves. This section presents two methods
for averaging ROC curves: vertical and threshold aver-
aging.

Fig. 9a shows five ROC curves to be averaged. Each
contains a thousand points and has some concavities.
Fig. 9b shows the curve formed by merging the five test sets
and computing their combined ROC curve. Fig. 9c and d
shows average curves formed by sampling the five individ-
ual ROC curves. The error bars are 95% confidence
intervals.

8.1. Vertical averaging

Vertical averaging takes vertical samples of the ROC
curves for fixed FP rates and averages the corresponding
TP rates. Such averaging is appropriate when the FP
rate can indeed be fixed by the researcher, or when a
single-dimensional measure of variation is desired. Pro-
vost et al. (1998) used this method in their work of
averaging ROC curves of a classifier for k-fold cross-
validation.

In this method each ROC curve is treated as a function,
R, such that tp rate = R(fp rate). This is done by choosing
the maximum fp rate for each fp rate and interpolating
between points when necessary. The averaged ROC curve
is the function R(fp rate) = mean[R;(fp rate)]. To plot an
average ROC curve we can sample from R at points regu-
larly spaced along the fp rate-axis. Confidence intervals of
the mean of #p rate are computed using the common
assumption of a binomial distribution.

Algorithm 3 computes this vertical average of a
set of ROC points. It leaves the means in the array
TPavg.

Several extensions have been left out of this algorithm
for clarity. The algorithm may easily be extended to
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Fig. 9. ROC curve averaging. (a) ROC curves of five instance samples, (b) ROC curve formed by merging the five samples, (c) the curves of a averaged

vertically and (d) the curves of a averaged by threshold.

compute standard deviations of the samples in order to
draw confidence bars. Also, the function TP_FOR_FP may
be optimized somewhat. Because it is only called on mono-
tonically increasing values of FP, it need not scan cach
ROC array from the beginning every time; it could keep
a record of the last point seen and initialize i from this
array.

Fig. 9c shows the vertical average of the five curves in
Fig. 9a. The vertical bars on the curve show the 95% con-
fidence region of the ROC mean. For this average curve,
the curves were sampled at FP rates from O through 1 by
0.1. It is possible to sample curves much more finely but
the confidence bars may become difficult to read.

8.2. Threshold averaging

Vertical averaging has the advantage that averages are
made of a single dependent variable, the true positive rate,
which simplifies computing confidence intervals. However,
Holte (2002) has pointed out that the independent variable,
false positive rate, is often not under the direct control of
the researcher. It may be preferable to average ROC points
using an independent variable whose value can be con-
trolled directly, such as the threshold on the classifier scores.

Threshold averaging accomplishes this. Instead of sam-
pling points based on their positions in ROC space, as ver-

tical averaging does, it samples based on the thresholds
that produced these points. The method must generate a
set of thresholds to sample, then for each threshold it finds
the corresponding point of each ROC curve and averages
them.

Algorithm 4 shows the basic method for doing this. It
generates an array 7 of classifier scores which are sorted
from largest to smallest and used as the set of thresholds.
These thresholds are sampled at fixed intervals determined
by samples, the number of samples desired. For a given
threshold, the algorithm selects from each ROC curve the
point of greatest score less than or equal to the threshold.*
These points are then averaged separately along their X
and Y axes, with the center point returned in the Avg array.

Fig. 9d shows the result of averaging the five curves of
Fig. 9a by thresholds. The resulting curve has average
points and confidence bars in the X and Y directions.
The bars shown are at the 95% confidence level.

There are some minor limitations of threshold averaging
with respect to vertical averaging. To perform threshold
averaging we need the classifier score assigned to each
point. Also, Section 4.1 pointed out that classifier scores

4 We assume the ROC points have been generated by an algorithm like 1
that deals correctly with equally scored instances.
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Algorithm 3. Vertical averaging of ROC curves
Inputs: samples, the number of FP samples; nrocs, the
number of ROC curves to be sampled, ROCS[nrocs], an
array of nrocs ROC curves; npts[m], the number of points
in ROC curve m. Each ROC point is a structure of two
members, the rates fpr and tpr.
Output: Array tpravg[samples + 1], containing the vertical
averages.

I:s—1
2 for fproumpie = 0 to 1 by 1/samples do
tprsum «— 0
for i =1 to nrocs do

tprsum « tprsum + TPR_FOR_FPR(fPFsamples

ROCS[i],npts(i])

DA N

end for
tpravgls] < tprsum/nrocs
s—s+1
: end for
end
: function TPR_FOR_FPR(fPFsampie» ROC,npts)
i—1
: while i <npts and ROC [i + 1].fpr < fprsampie do
i—i+1
end while
¢ if ROCTi)fpr = fpFsamplc then
return ROCTi).tpr
else
return INTERPOLATE(ROCTi], ROC [i + 1], fp¥sample)
. end if
: end function
: function INTERPOLATE(ROCP1, ROCP2, X)
: slope = (ROCP2.tpr — ROCP1.tpr)/(ROCP2.fpr —
ROCP1 fpr)
: return ROCP1.tpr + slope - (X — ROCP1 fpr)
4: end function

.
Nk 220030

99

should not be compared across model classes. Because of
this, ROC curves averaged from different model classes
may be misleading because the scores may be incom-
mensurate.

Finally, Macskassy and Provost (2004) have investi-
gated different techniques for generating confidence bands
for ROC curves. They investigate confidence intervals from
vertical and threshold averaging, as well as three methods
from the medical field for generating bands (simultaneous
join confidence regions, Working-Hotelling based bands,
and fixed-width confidence bands). The reader is referred
to their paper for a much more detailed discussion of the
techniques, their assumptions, and empirical studies.

9. Decision problems with more than two classes
Discussions up to this point have dealt with only two

classes, and much of the ROC literature maintains this
assumption. ROC analysis is commonly employed in med-

Algorithm 4. Threshold averaging of ROC curves
Inputs: samples, the number of threshold samples; nrocs,
the number of ROC curves to be sampled; ROCS[nrocs], an
array of nrocs ROC curves sorted by score; npts[m], the
number of points in ROC curve m. Each ROC point is a
structure of three members, fpr, tpr and score.
Output: Avg[samples + 1], an array of (X, Y) points
constituting the average ROC curve.
Require: samples > 1
1: initialize array 7 to contain all scores of all ROC
points
: sort 7 in descending order
s—1
: for tidx = 1 to length(T) by int(length(T)/samples) do
fprsum — 0
tprsum «— 0
for i =1 to nrocs do
P < ROC_POINT_AT_THRESHOLD(ROCSTi], npts[i],
T(tidx))
9: fprsum — fprsum + p.fpr
10: tprsum «— tprsum =+ p.tpr
11:  end for
12:  Avg[s] < (fprsum/nrocs, tprsum/nrocs)
13: s«—s+1
14: end for
15: end
1: function ROC_POINT_AT_THRESHOLD(ROC, npts, thresh)
i—1
: while i < npts and ROCTi]. score > thresh do
i—i+1
end while
: return ROCTi]
: end function

e A A T ol

ical decision making in which two-class diagnostic prob-
lems—presence or absence of an abnormal condition—
are common. The two axes represent tradeoffs between
errors (false positives) and benefits (true positives) that a
classifier makes between two classes. Much of the analysis
is straightforward because of the symmetry that exists in
the two-class problem. The resulting performance can be
graphed in two dimensions, which is easy to visualize.

9.1. Multi-class ROC graphs

With more than two classes the situation becomes much
more complex if the entire space is to be managed. With n
classes the confusion matrix becomes an »n X n matrix con-
taining the n correct classifications (the major diagonal
entries) and n® — n possible errors (the off-diagonal entries).
Instead of managing trade-offs between TP and FP, we
have n benefits and n> — n errors. With only three classes,
the surface becomes a 3” — 3 = 6-dimensional polytope.
Lane (2000) has outlined the issues involved and the pros-
pects for addressing them. Srinivasan (1999) has shown
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that the analysis behind the ROC convex hull extends to
multiple classes and multi-dimensional convex hulls.

One method for handling # classes is to produce # differ-
ent ROC graphs, one for each class. Call this the class ref-
erence formulation. Specifically, if C is the set of all classes,
ROC graph i plots the classification performance using
class ¢; as the positive class and all other classes as the neg-
ative class, i.e.

P[:C[ (2)
NiZUCjEC (3)
Pt

While this is a convenient formulation, it compromises one
of the attractions of ROC graphs, namely that they are
insensitive to class skew (see Section 4.2). Because each
N; comprises the union of n — 1 classes, changes in preva-
lence within these classes may alter the ¢/s ROC graph.
For example, assume that some class ¢, € N is particularly
easy to identify. A classifier for class ¢;, i # k may exploit
some characteristic of ¢, in order to produce low scores for
¢ instances. Increasing the prevalence of ¢, might alter the
performance of the classifier, and would be tantamount to
changing the target concept by increasing the prevalence of
one of its disjuncts. This in turn would alter the ROC
curve. However, with this caveat, this method can work
well in practice and provide reasonable flexibility in
evaluation.

9.2. Multi-class AUC

The AUC is a measure of the discriminability of a pair
of classes. In a two-class problem, the AUC is a single sca-
lar value, but a multi-class problem introduces the issue of
combining multiple pairwise discriminability values. The
reader is referred to Hand and Till’s (2001) article for an
excellent discussion of these issues.

One approach to calculating multi-class AUCs was
taken by Provost and Domingos (2001) in their work on
probability estimation trees. They calculated AUCs for
multi-class problems by generating each class reference
ROC curve in turn, measuring the area under the curve,
then summing the AUCs weighted by the reference class’s
prevalence in the data. More precisely, they define

AUC, = Y AUC(c:) - p(ci)
c;eC

where AUC(¢;) is the area under the class reference ROC
curve for ¢; as in Eq. (3). This definition requires only |C|
AUC calculations, so its overall complexity is O(| C|nlogn).

The advantage of Provost and Domingos’s AUC formu-
lation is that AUC,, is generated directly from class ref-
erence ROC curves, and these curves can be generated and
visualized easily. The disadvantage is that the class refer-
ence ROC is sensitive to class distributions and error costs,
so this formulation of AUC ¢ is as well.

Hand and Till (2001) take a different approach in their
derivation of a multi-class generalization of the AUC. They

desired a measure that is insensitive to class distribution
and error costs. The derivation is too detailed to summa-
rize here, but it is based upon the fact that the AUC is
equivalent to the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly
chosen negative instance. From this probabilistic form,
they derive a formulation that measures the unweighted
pairwise discriminability of classes. Their measure, which
they call M, is equivalent to:

2

A otal = T 4171~ 1\
YCou = 1e11er=1)

AUC(C,’, Cj)

{eereC

where n is the number of classes and AUC(c;, ¢)) is the area
under the two-class ROC curve involving classes ¢; and c;.
The summation is calculated over all pairs of distinct
classes, irrespective of order. There are |C|(|C|— 1)/2
such pairs, so the time complexity of their measure is
O(|C[*nlogn). While Hand and Till’s formulation is well
justified and is insensitive to changes in class distribution,
there is no easy way to visualize the surface whose area is
being calculated.

10. Interpolating classifiers

Sometimes the performance desired of a classifier is not
exactly produced by any available classifier, but lies
between two available classifiers. The desired performance
can be obtained by sampling the decisions of each classifier.
The sampling ratio will determine where the resulting
classification performance lies.

For a concrete example, consider the decision problem
of the ColL Challenge 2000 (van der Putten and Someren,
2000). In this challenge there is a set of 4000 clients to
whom we wish to market a new insurance policy. Our bud-
get dictates that we can afford to market to only 800 of
them, so we want to select the 800 who are most likely to
respond to the offer. The expected class prior of responders
is 6%, so within the population of 4000 we expect to have
240 responders (positives) and 3760 non-responders
(negatives).

Assume we have generated two classifiers, A and B,
which score clients by the probability they will buy the
policy. In ROC space A lies at (0.1,0.2) and B lies at
(0.25,0.6), as shown in Fig. 10. We want to market to
exactly 800 people so our solution constraint is fp
rate x 3760 + tp rate x 240 = 800. If we use A we expect
0.1 x 3760 + 0.2 x 240 = 424 candidates, which is too few.
If we use B we expect 0.25x 3760+ 0.6 x 240 = 1084
candidates, which is too many. We want a classifier
between A and B.

The solution constraint is shown as a dashed line in
Fig. 10. It intersects the line between A and B at C, approx-
imately (0.18,0.42). A classifier at point C would give the
performance we desire and we can achieve it using linear
interpolation. Calculate k as the proportional distance that
C lies on the line between A and B:
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Therefore, if we sample B’s decisions at a rate of 0.53 and
A’s decisions at a rate of 1 — 0.53 =0.47 we should attain
C’s performance. In practice this fractional sampling can
be done by randomly sampling decisions from each: for
each instance, generate a random number between zero
and one. If the random number is greater than &, apply
classifier A to the instance and report its decision, else pass
the instance to B.

11. Conclusion

ROC graphs are a very useful tool for visualizing and
evaluating classifiers. They are able to provide a richer
measure of classification performance than scalar measures
such as accuracy, error rate or error cost. Because they de-
couple classifier performance from class skew and error
costs, they have advantages over other evaluation measures
such as precision-recall graphs and lift curves. However, as
with any evaluation metric, using them wisely requires
knowing their characteristics and limitations. It is hoped
that this article advances the general knowledge about
ROC graphs and helps to promote better evaluation prac-
tices in the pattern recognition community.
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7.2 What you should know by now

You should be able to mathematically define and calculate the sensitivity and
specificity of a model from a confusion matrix. You should be able to do the
same for F-measure, and why it is useful. You should know why ROC analysis
via these quantities is necessary and under which problem scenarios it is most
useful. You should know how to evaluate a ROC curve by eye, judging the
performance of one model against another.
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The models we’ve seen so far have been geometric (perceptrons/SVMs), distance-
based (k-NN) or trees (decision trees). In this chapter we’re going to see a new
class of models, those based on probability theory. This is in fact one of the
hottest areas of Machine Learning right now, being a major focus for research
labs like Microsoft and Google. To understand these models will require knowl-
edge of probability theory, specifically conditional probabilities, and joint prob-
abilities. We will review these in this first section — feel free to skip it if you're
already comfortable with these ideas — before moving onto Bayes’ Theorem, and
the probabilistic models that result from using it.

If you find the style of this chapter not to your liking, try reading Appendix B,
which provides virtually the same material, but written in a different way.

8.1 Probability Basics

If I flip a coin, what is the probability that it will land heads up? The answer
to this question is quite intuitive for most people. But, people might answer
slightly differently: “the probability is a half”, or “the probability is 50:50”,
or “the probability is 50%”. To be mathematically rigorous,we should in fact
say “the probability is 0.5”7. This is because probabilities are always between 0
and 1 — different from percentages, which are between 0 and 100. Though the
mapping is easy between these two, it is good practice to be strict with yourself.

8.1.1 Random Variables

If you wrote a computer program to store a variable called coinFaceUp, you
would say something like coinFaceUp = “HEAD”. The value of this variable
is deterministic — it’s either set to something, or it’s not. In reality, the side
of the coin facing upward is a random event. As humans, we face events with
uncertainty all the time, for example what the weather will be tomorrow. We
therefore need a notation to deal with variables that have randomness — where
the value assigned to a variable can be “HEAD” with probability 0.5, or “TAIL”
with probability 0.5. These are called random wvariables.

We denote the alphabet of the random variable as {head, tail}, and the proba-
bility of a particular event as p(coinFaceUp = head) = 0.5. We could also take
a more abstract naming convention, and refer to a variable X, for which the
possible values (alphabet) are X = {0,1}, and p(X = 1) = 0.5. So, using this
notation, let’s consider rolling a dice. In this case, X = {1,2,3,4,5,6} and for
example p(X =3) = ¢.

magine if you were modifying a computer program that navigated a spacecraft to Mars —
you find a variable called chanceOfSolarFlare, set equal to 0.8. You interpret it incorrectly
as being in the range [0, 100], a percentage, whereas in reality the programmer set it in the
range [0,1]. You would end up believing there was a very small chance of a flare, whereas in
fact there is a very large chance!



8.1. PROBABILITY BASICS 103

The first rule of probability theory is that probabilities always add up to 1. What
I mean by this is simply that if I tell you there is a variable X, with alphabet
{0,1,2}, then p(X =1) 4+ p(X =2) + p(X = 3) = 1. In more general terms:

dpexPX =2) =1

A useful consequence of this is that for a variable X, with alphabet {0,1}, and
p(X = 0) = 0.2, we immediately know that:

Before we move onto the next section, a quick note — the notation we’ve been
using is nicely explicit, though can be a little laborious sometimes. As a short-
hand notation, to represent the probability of an arbitrary event from the ran-
dom variable X, we will just use p(z) = p(X = z), where the lower case z is
any possible event from the corresponding upper case X.

8.1.2 Estimated Probabilities vs. True Probabilities

We have considered random variables which are genuine random events, like dice
and coin flips. We can also consider probabilities observed from data. Imagine
a census of the UK population. Let’s say there are 64 million people. What is
the probability of a male in this population? If there are 31 million men, that
makes p(male) = & = 0.484375.

If T didn’t have access to all the census data, and I wanted to estimate the
male population in the UK, I could do it by finding a reasonable sized sample

of people, and counting the males/females.

Here, I found 27 people, 11 of whom were male. I estimate the UK male popu-
lation to be #1 ~ 0.41. We denote the estimate by a ‘hat’, as so: p(male).

True probability .............. p(male) = 0.484375
Estimated probability ...... p(male) = 0.41.
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The true probability p(male) is also known as a population parameter, while
p(male) is known as a sample estimate of that parameter. Intuitively, you can
imagine that if I found a larger sample of people (more than 27) then I would
get closer and closer to the population value. Unfortunately of course, data
is usually limited, so we rely on estimation a lot in this field. The frequency
counting method above is called mazimum likelihood estimation, but there are
other ways to estimate than just this method. Look up the details online or in
another book if you want to know more — the method of “Laplace correction”
is a good starting point.

8.1.3 Joint Probabilities

The probability of an event (such as finding a male person in the UK) can be
simply extended to the concept of joint probabilities. For example the probabil-
ity of a male and being over 180cm tall. In formal mathematical notation this
is written in different ways depending on which textbook you read:

p(male AND tall) p(male A tall)

p(male, tall) p(male N tall)

...but they all mean the same thing. We will use the p(male, tall) form. Take a
look at the following dataset, a sample of 10 examples from a larger population.

person id gender tall? bloodtype

= © 00 O Uik Wi
222222~
POWWOWOT >

0

Table 8.1: Some data, sampled from a larger population of people.

You should be able to work out from this table that p(male,tall) = 0.2. This

is because we find the number of examples where we have a tall male (persons

142) and divide that by the total number of people, so %. Notice again that we

have estimated the population probability, with a maximum likelihood estimate.

Similarly, you should be able to confirm for a female with bloodtype A, that the
2

estimated probability is p(female, A) = 5.
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Ll1" 3 SELF-TEST

W 1. What is the estimated probability of being tall?
2. What is p(bloodtype = O) ?
) 3. Do we know the value of p(bloodtype = A) ?

Top tip: Read Q3 carefully ;-)

8.1.4 Conditional Probabilities

This is the final bit of tutorial material before we move onto the focus of this
chapter. Conditional probabilities are simply the probability of one thing being
true, given that we know a certain other thing is true. For example, the proba-
bility of having a blood type A, given that you are male. In our formal notation,
we will denote this as:

p(bloodtype = A | gender = male)
The little bar ‘|” notation, should be read “given that’. This can also be in-
terpreted as the prevalence of blood type A in the male population. From our
data, we could estimate this as:
p(bloodtype = A | gender = male) = ;
This is estimated by simply finding all the people that are male (persons #1-4)

and the fraction of those that have bloodtype A, which is just person #1, thus
the estimated probability is 0.25.

person id gender tall? bloodtype

= O 00 O ULk W N
M EE 2L

2227 < A2
>O0WWOrWOwW e

0

Table 8.2: The probability of having bloodtype A in the population of males is
denoted p(bloodtype = A | gender = male), and is estimated to be 0.25.
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A very important thing to note is that p(z|y) # p(y|z). If we estimate
the probability of being male, given that your blood type is A, then is it:

p(gender = male | bloodtype = A) = %

Again, you should be able to calculate these simple conditional probabilities
just by finding the examples that satisfy the condition after the vertical bar ‘|,
and finding the fraction of those that satisfy the condition before it.

SELF-TEST
H1L"1l:;, % /\A/W Work out the maximum likelihood estimates of the
following probabilities. Note that on some questions
“%} I have used the notation p(gender = male), and on
N % others just p(male). Different people use different
notations, so you should get used to understanding
what is meant in different situations.

p(female) p(tall =Y)
p(bloodtype = O) p(female, tall)
p(tall | female) p(female | tall)

We can in fact relate these two concepts of conditional and joint probabilities.
The rule for arbitrary variables X and Y is:

p(z,y) = p(zly)p(y)

We can check this with our dataset, using a shorthand notation p(typeA) for
the probability of someone’s blood type being A, we estimate the probabilities:

p(male,typeA) = p(male | typeA)p(typeA)
1 1 3

it 3 X 10

Interestingly, this rule holds the other way round too. What I mean is:

p(z,y) = p(ylz)p(x)

This is simply because the order of the arguments in p(X,Y’) do not matter, i.e.
p(X,Y) =p(Y, X). Checking it with the same example:

p(male, typeA) = p(typeA, male) = p(typeA | male)p(male)
1 _ 1 _ 1 4
10 10 1 10
Check this yourself for other combinations of variables in the dataset. You
should find it holds in all cases.
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The final little rule of probability theory we will cover concerns independent
events. Imagine we've gone to a Las Vegas casino — X is a variable representing
a dice roll, and Y is a variable representing another dice roll. What is the
probability of rolling two sixes?

5:

=

-

-
% o

We know each die has an alphabet {1,2, 3,4, 5,6}, and they are completely ran-
dom, so p(X =z) = %, for any value of x. If I roll the two dice at once, then
we are talking about the joint probability, p(X,Y). So, what is the probability
p(X =6,Y =6) ? Using the rule to relate conditional and joint probabilities,
we know from earlier:

p(X =6,Y =6) = p(X =6]Y =6)p(Y =6)

...we know that p(y) is &, but what is p(z|y) ? Well, translating the maths into
plain english, p(z|y) reads, “what is the probability of a 6 from the X dice,
given that the Y dice is a 67”. We know from simple logic that these events are
in fact independent, so p(x|y) is just equal to p(x), which is again é. The rule
for independent events is therefore:

p(z,y) = p(x)p(y).

Check it for yourself with the concept of a coin flip, or maybe a rolling three
dice, or any other events you know to be independent of one another.

This has been an exceptionally short introduction to probability theory, designed

to just give you a feel for the maths we will be doing. There are things not men-

tioned in here, that may come up in the more advanced aspects of this course.

To brush up on more detailed aspects, I suggest you consult a textbook (the

Schaum’s Outlines series is generally good) or Google for something like “tuto- SCHAUM’S
rial probability basics”. We do have all the machinery necessary to understand OUTLINES
a very important tool for modern Machine Learning: Bayes’ Theorem.
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8.2 Bayes’ Theorem

In the mid-18th century, an Englishman named Thomas Bayes discovered a
small but very significant piece of mathematics, wrote it in his diaries, and
promptly died. It was published after his death by a friend, and forgotten. Many
years later, the famous mathematician Pierre-Simon de Laplace, uncovered? just
what he had done. Laplace developed the ideas significantly further, though the
main theorem made use of today is named after Thomas Bayes, and this one
idea has revolutionised modern machine learning in the past 15 years.

Figure 8.1: Reverend Thomas Bayes, 1701-1761.

8.2.1 Deriving the Theorem

Imagine we have two random variables, X and Y, both of which have possible
values {0,1}. Bayes’ theorem applies for more than just binary vari-
ables, but this is the simplest scenario to start with. Let’s apply some
of rules we know for joint and conditional probabilities. For any values in the
X,Y alphabets:

p(z,y) = p(zly)p(y),

...but remember it works the other way round:
p(z,y) = ply, z) = p(y|z)p(x).

Combining these two results, we have:
pylz)p(z) = p(xly)p(y).

and finally, dividing both sides by p(x), we get...

p(zly)p(y) (8.1)

plylr) = @)

. which is Bayes’ Theorem. Just an equation, but let’s now see what it
really means, and what it enables us to do.

2http://lesswrong.com/lw/774/a history_of bayes_theorem/
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First we’ll apply the theorem to our data on people from Table 8.1. Using Bayes’
theorem, and with X = {male, female}, and Y = {tall, not-tall}.

p(X =male | Y = tall)p(Y = tall)
p(X = male)

p(Y =tall | X = male) = (8.2)

and estimating the various probabilities...

p(Y =tall | X = male) =0.5
P(X =male | Y =tall) =0.5
BY = tall) = 0.4
P(X = male) =0.4

We find it does indeed hold, since p(Y = tall | X =male) = 2304 = 0.5.

This is correct, but seems kind of strange because we could just work out
the probability p(y|z) by doing frequency counts from the data. The power of
Bayes’ Theorem comes when you can’t do this - and have to make predictions.
We will see the power of Bayes’ theorem, by applying it in a real world situation
to make a prediction.

8.2.2 Diagnosing Diabetes

According to Wikipedia, there is a world average incidence of diabetes of 2.8%, DIABETES
or in probability notation, p(Y = diabetes) = 0.028. There is a medical test,

the Oral Glucose Tolerance Test, which measures the glucose levels in a person’s

blood — if above a certain threshold, the test predicts that you have diabetes.

We will denote the outcome of this test by the random variable X:

X = {positive, negative}, Y = {diabetes, no-diabetes}

The OGTT test is worldwide accepted, and very sensitive — it will detect dia-
betes correctly 95% of the time if it is present. In formal probability notation,
this says p(X = positive|Y = diabetes) = 0.95. However, occasionally, very
rarely, OGTT gives a false positive. This false positive (also known as false
alarm) rate is just 1%, so p(X = positive|Y = no-diabetes) = 0.01.

We see that the test is not perfect, hence may make a mistake. Thus, we would
like to know the value of p(Y = diabetes | X = positive), that is, the chances of
someone having diabetes, given that the test says they have it. Bayes’ theorem
tells us that,

p(X = positive | Y = diabetes)p(Y = diabetes)
p(X = positive)

p(Y = diabetes | X = positive) =
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We don’t have a dataset to estimate the probabilities from, but we have our
own domain knowledge. The value of p(Y = diabetes) is known to be 0.028,
and p(X = positive | Y = diabetes) is known also. The only part missing
from our equation is p(X = positive). This is the overall probability of the test
returning a positive result. If we don’t have data, how could we possibly know
that? Luckily, there is a way.

We use the following rule from probability theory, called marginalisation:

p(X=2)= 3 p(X =Y = y)p(Y =) (8.3)
yey

In words, this says is that the probability of any given X wvalue is equal to
the probability of the value, given every possible situation for the Y wariable,
weighted by the probability of that Y wariable. This concept may take a while to
sink into your brain — don’t worry. In practical terms for our diabetes problem,
it means this:

p(X = positive) = p(X = positive | Y = diabetes)p(Y = diabetes)
+ p(X = positive | Y = no-diabetes)p(Y = no-diabetes)
(8.4)

Notice that we need to know p(X = positive | Y = no-diabetes). This is the
false alarm rate, which we know to be p(X = positive|Y = no-diabetes) = 0.01.
Remembering that p(Y = no-diabetes) = 1 — p(Y = diabetes), and plugging in
the values for these probabilities, we get:

0.95 x 0.028
(0.95 x 0.028) + (0.01 x 0.972)
0.0266
0.0266 + 0.00972

p(Y = diabetes | X = positive)

0.73237...

Q

So there’s a 73% chance that you really do have diabetes, when the test says
you do — it’s not a perfect test, but maybe you thought it was more reliable
than it actually is.

Take your time to go over this again if you don’t get it immediately, before
moving onto the next sections.
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So, we’ve just worked out the probability that a person really has diabetes, given
that the test says they do, or mathematically, p(Y = diabetes | X = positive).

_ p(X=positive | Y=diabetes)p(Y =diabetes)
- p(X=positive)

p(Y = diabetes | X = positive)
Similarly, we can work out the probability of NOT having diabetes given that
the test says they do:

p(X=positive|Y =no-diabetes)p(Y =no-diabetes)
p(X=positive)

p(Y = no-diabetes | X = positive) =
...which is just (1—0.73237) = 0.2676. Now, we could have worked this out just
from knowing that probabilities always sum to one, Zer p(Y =yl X =2) =1,
but notice something interesting by writing it out explicitly... the denominator
is the same in both cases. And, from Eq. (8.4), we know that this denominator
is the sum of all the numerators for every possible value of Y.

If we give the numerators shorthand names, a, and b:
a = p(X = positive | Y = no-diabetes)p(Y = no-diabetes)
b = p(X = positive | Y = diabetes)p(Y = diabetes)

Then we can see simply that:

b
Y = diabetes | X = positi =
o( iabetes | positive) P
a
Y = no-diabetes | X = positi =
o( no-diabetes | positive) P

Now imagine we had a more advanced test, that could distinguish between dif-
ferent types of diabetes, i.e. we use the notation: Y = 0 means no diabetes,
Y =1 means type-1 diabetes, Y = 2 means type-2 diabetes...

a = p(X =positive | Y =0)p(Y =0)
b = p(X =positive | Y =1)p(Y =1)
¢ = p(X =positive | Y =2)p(Y = 2)

and applying the same principle as above...

b

Y=1|X= iti = —
p( | positive) P

...and so on. Again, take your time to go over this — it’s tough and quite non-
intuitive the first time you meet it.
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8.2.3 Thinking about it another way

This section contains a more intuitive, less mathematical way of thinking about
Bayes’” Theorem. You should use this section as a way to clarify your under-
standing of the previous section. You should not just rely on the approach in
this section to do the calculations.

Let’s imagine 10,000 randomly chosen people worldwide to test for diabetes.
Some of those (2.8%) will have diabetes. When we administer the test, some of
each group (those with diabetes, and some of those without) will get a positive
result. This is illustrated below.

X = test for diabetes

Y = diabetes
10,000 people
p(Y=1) =0.028 p(Y=0) =0.972
280 people 9720 people

p(X=1|Y=1) = 0.95 p(X=1[Y=0) = 0.01

266 people 14 people 97.2 people 9622.8 people

Diabetes Diabetes No diabetes No diabetes

& & & &
Positive Test Negative Test Positive Test Negative Test

So if T ask you again, what is p(Y = 1|/X = 1), or in other words, what are
the chances of diabetes really being present, given that the test said it was?
Logically from the diagram, you should be able to see that we just take the
number of cases where the test was positive (266 + 97.2), and see what fraction
of those really had diabetes:

266 266 __
3664973 = 3633 — 0-73237...

which is 73%, exactly the same answer we got by going through Bayes’ Theorem.
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8.2.4 One more Bayes example: Catching Bad Guys

The US government does a lot of electronic surveillance, trying to catch people
threatening terrorist action. The general incidence of terrorism in the population
is thankfully quite rare — let’s say 1 in a million. So, the NSA (National Security
Agency) has a test, to process someone’s email automatically, and say if they
are suspicious or not.

Let’s assume the people at the NSA are quite smart (if a bit scary) so their
email analysis somehow correctly identifies terrorist emails 99% of the time.
Sometimes, the system makes a mistake and thinks an innocent person is a ter-
rorist — let’s say this is 2% of the time. If X is the output of the system, and
Y is the true identity of a person (terrorist or not) then we want to calculate
the value of p(Y = 1|X = 1), the chances of them really being a terrorist if the
system says they are.

We know that p(Y = 1) = 1556505. We also know that p(X = 1]Y = 1) = 0.99,
and that p(X = 1|Y = 0) = 0.02. So, applying Bayes’ Theorem we get:

0.99 x —L
1,000,000
p(Y =1X=1) = 0.99 1 0.02 x 999,999
(0.99 X 1550600) + (0-02 X 556 006)
0.0000009

~0.0000009 + 0.01999998 ~ 0.0000495...
This is the probability that the NSA has found a REAL bad guy, when their sys-
tem says they have found one. In every day language, this is a chance of about 1
in 20, 000, that is, for every 20,000 suspects that the system says “that’s a bad
guy”, only 1 of them will actually be one. You may have thought their systems
were quite good with 99% accuracy in finding bad guys, but here you see the
true difficulty of the problem they face.

If you want to verify these numbers yourself, you may want to write some code
(or just work in fractions) since these numbers are quite small — a standard
calculator may lose some precision when you do the divisions.
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8.3 Naive Bayes Models

You can use Bayes’ Theorem to make predictions as usual on training/testing
data. Imagine we had this data:

O OO — X
.—noooo.—nb
oo~ ool

COom N

Table 8.3: Some sample data.

Here we have 3 arbitrarily named features, X7, Xo and X3. I hope you can work

out from this data that p(Y = 1|1X; = 1) = % If you cannot do this, go

back to the previous section as it’s only going to get tougher.

SELF-TEST
\_LLE;, 3 W For extra practice — calculate p(Y = 1| X2 = 0), from
the data above. Then calculate p(Y = 1, Xy = 0),
é%) and p(Xs = 0), and state how these three probabili-
‘ ties relate to each other.

But what if we get a new testing example that we’ve never seen: x = {1,1,1}?
That is, where X; = 1, Xo = 1 and X3 = 1. We could apply Bayes’ Theorem,
but to use it, we need to calculate the numerator for when Y = 1:

p(Y = 1|X1 = ].,XQ = 17X3 = 1) o p(Xl = 1,X2 = ].,Xg = 1|Y = 1)p(Y = ].)

where the symbol « means “proportional to”. We know that p(Y =1) =
what about the right hand side term, p(X; =1, X, =1,X5=1Y =1) ?

To get around this, we make the conditional independence assumption:
p(z1, z2, 23ly) = pla1|y)p(z2ly)p(zsly)

or in more general terms:
p(xly) = IL; p(zily)

Mathematically, this means the features are conditionally independent of each
other, given the class value. An intuitive explanation is much harder, but it can
be visualised, as in Figure 8.2. This is called the “Naive Bayes” model.
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Figure 8.2: The graphical representation of Naive Bayes. The fundamental
assumption of Naive Bayes is conditional independence, or p(x|y) = [ [, p(z:ily).
You should hopefully be able to see how the graph corresponds to this.

You should not interpret the word “Naive” as to indicate that Naive
Bayes is a ‘stupid’ model. Naive Bayes often performs extremely well, and
there is a lot of theoretical analysis® trying to figure out why it can work so
well, in spite of such a seemingly naive assumption.

So, given the training data in the Table 8.3, what probability will a Naive Bayes
classifier predict for p(Y = 1|x), given input x = {1,1,1}7 ?

First estimate necessary probabilities for Y =1,

XL =1y =1) =

[N

p(Xo=1Y =1)=pX3=1Y =1) = %
and for Y =0,

PXI=1Y =0)=p(Xo=1]Y =0) =p(X3=1|Y =0) = 3

The prior is p(Y = 1) = %, and we know p(Y =0) =1 —p(Y = 1). So finally,
we have :
A A A 4 4
p(Y:l\x)ocHip(Xi:HY:l)xp(Y:l):%xixixg:@
PO = 0x) o TT, A(X: = 1Y = 0) x oY =0) =L x b x dx 2= 2

And finally, we see that using Naive Bayes, when x = {1,1, 1}, we predict

4
A _ _ 192 1
Y =1fx) = -y = 1

I 2
Toz T8

which is something we could not have done if we had just used Bayes’ Theorem
without the conditional independence assumption.

3Domingos and Pazzani “On the Optimality of the Simple Bayesian Classifier under Zero-
One Loss”, Machine Learning Journal, vol 29, pages 103-130 (1997)
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8.4 Bayesian Networks

You saw in Figure 8.2 the Naive Bayes model, visualised as a graph. This is in
fact a special case of a wider class of models, called “Bayesian Networks”. A
Bayesian Network is a directed acyclic graph*, that represents a probability dis-
tribution. The distribution corresponding to the network shown in Figure 8.2 is:

p(z1,72,73,y) = p(y)p(x1ly)p(z2|y)p(23]Y)

You should be able to see how the two relate. Another example is this:

The distribution corresponding to this network is:

p(x1, 2, 23,y) = p(y)p(x1|y,xg)p(x2|y,x3)p(m3|y)

The probabilities can be learnt in exactly the same way, by counting frequen-
cies of occurrence in the data. However, this particular example highlights a
problem... for an input x = {1, 1,1}, we estimate probabilities from the data in

Table 8.3:

If we apply Bayes’ theorem (I will leave it as an exercise for you to do this)
we find that p(Y = 1|x) = 0, and also p(Y = 0|x) = 0, that is, neither class
label has any probability of happening! This can obviously not be true, and this
problem is a symptom of not having enough data — the dataset in the table is
too small to allow us to estimate the probabilities properly.

The more links in a Bayesian Network, the more complicated the
probability distribution, and hence the more data is needed. The links
correspond to the over/underfitting of the model — like a decision tree being

4i.e. there cannot be loops in the network.
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too deep, this model is too complex for our small data. As a result, it over-
fits, believing the zero probabilities that it observes in the very small training
dataset.

One of the great advantages of Bayesian Networks is that you can very naturally
encode human knowledge about a given problem.

Imagine you travel a lot for work, and that your house has a burglar alarm.
When it goes off, one of your two neighbours (John and Mary) might phone
you to tell you, or maybe both will phone. So, when you see John, or Mary,
come up on your phone, you could infer (predict) that the alarm has gone off°.
However, the cause of the alarm sounding could be one of two things — either
a burglar is in your house, or possibly... an earthquake!

This story is encoded by the following network:

Burglary Earthquake

0.95

P(B=1)

P(E=1)

0.94

0.29

o|lo|r |~
o|r|o|r

0.001

1 0.90

1 0.70

0 0.05

0 0.01

Here, you can see clearly that in a Bayesian Network, there is a probability
distribution stored at each network node. The probability of an earthquake
is p(E = 1) = 0.002, and the probability of a burglar is p(B = 1) = 0.001.
The probability of the alarm, when there is a burglar but no earthquake, is
p(A=1|B=1,E =0)=0.94. You can read the other probabilities off yourself.

Remember, every network encodes a probability distribution — this one is:
p(B,E, A, J,M) = p(J|A)p(M|A)p(A|B, E)p(B)p(E)
The clever thing about Bayesian Network models, is that we can use it to make

predictions about any of the variables. We don’t have to designate one of them
as a special class variable Y. We can get a prediction for p(E = 1|J = 1),

5Let’s assume they won’t call for any other reason as they know you’re busy.
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i.e. the probability of an earthquake given that John calls. Or we can get
a prediction for p(B = 1|M =1,J = 1,E = 1), i.e. the probability of a bur-
glar being in your house, given that both friends call, and an earthquake occurs!

This last one may seem strange, but we can in fact make a prediction for
any variable, given the states of any other (sub)set of other variables. These
predictions are performed using Bayes’ Theorem, combined with the marginal-
isation trick from Eq. (8.3), in a more sophisticated way. If we want to predict
the probability of there being a burglar in your house, given that Mary calls,
we need to calculate:

p(B=1M=1) o< Y>> p(jla)p(M = 1]a)p(a|B = 1,e)p(B = 1)p(e)

jeEJ eeE acA

However, to calculate this, we need three nested for-loops, one for each of the
J, E, and A variables. As such this becomes quite computationally intensive,
and even more so with bigger networks. There are efficient algorithms, outside
the scope of this course unit, to tackle this — these are the Variable Elimination
algorithm, and the Belief Propagation algorithm. Given the complexity of these
algorithms, these are more suited to a full course on probabilistic models, rather
than a short course like this one.

8.5 What you should know by now
You should be able to:

e calculate simple conditional and joint probabilities from a dataset;

e answer questions about a dataset by applying Bayes’ Theorem;

e manually calculate what a Naive Bayes would do for a given small dataset;
e draw the network corresponding to a given distribution, and vice versa;

e understand why small datasets can cause problems for complex networks.
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Committees of Models
(also known as ‘Ensemble’ Methods)

IN AN ENSEMBLE MODEL, FORECASTERS RUN MANY DIFFERENT VERSIONS OF A
WEATHER MODEL WITH SUGHTLY DIFFERENT INITIAL CONDITIONS, THIS HELPS ACCOUNT
FOR UNCERTAINTY AND SHOWS FORECASTERS A SPREAD OF POSSIBLE OUTCOMES.
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9.1 Background

Ensemble Learning refers to the procedures employed to train multiple models
and combine their outputs, treating them as a “committee” of decision mak-
ers. The principle is that the committee decision, with individual predictions
combined appropriately, should have better overall accuracy, on average, than
any individual committee member. Numerous empirical and theoretical studies
have demonstrated that ensemble models very often attain higher accuracy than
single models. The members of the ensemble might be predicting class labels,
or posterior probabilities. Therefore, their decisions can be combined by many
methods, including averaging, voting, and probabilistic methods. The major-
ity of ensemble learning methods are generic, applicable across broad classes of
model types and learning tasks.

The trick that ensemble algorithms exploit is the following: when a single
model cannot properly fit the data, the ensemble can make multiple versions
that each make errors in different ways—then vote or average their predictions,
cancelling out the errors of the individuals by the committee decision.
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9.2 Bagging and Random Forests

The Bagging algorithm generates differences between the models by feeding
them slightly different training sets. It does this with a data sampling technique
called a bootstrap. Given a dataset T', of size N, we randomly select N examples,
with replacement. The with replacement part is very important. It means that
we randomly pick one example to be in our training set, then put it back,
ensuring that it could be picked again. An example dataset and two bootstrap
samples are shown below.

187 | 80 | 120 | 30 | 4.5 | 0

150 | 80 | 185 | 60 | 8.8 || 1

- 150 | 80 | 185 | 60 | 8.8 || 1

w1 | w2 |xs @@ ||y </J 168 | 110 | 155 | 45 | 7.8 || 1

187 | 80 | 120 | 30 | 45 || O 168 | 110 | 155 | 45 | 7.8 || 1
160 | 70 | 119 | 36 | 5.6 || O
150 | 80 | 185 | 60 | 8.8 || 1
192 | 92 | 140 | 50 | 6.8 || 1

168 | 110 | 155 | 45 | 7.8 || 1 o,

\ 160 |70 | 119 |36 |56 ] 0

160 | 70 | 119 | 36 | 5.6 || O

150 | 80 | 185 | 60 | 8.8 || 1

192 | 92 | 140 | 50 | 6.8 || 1

168 | 110 | 155 | 45 | 7.8 || 1

This shows a dataset (left) and two bootstrap samples taken from it (right).
Notice that the first bootstrap (top right) contains 2 copies of the third and
fifth examples, but none of the second or fourth. The second bootstrap (bottom
right) is generated by following the same randomised procedure, but results in a
different training set—with 2 copies of the second example, and one copy each
of the third, fourth and fifth, but no copies of the first example. These random
differences between training sets are exploited to build different models, in the
Bagging algorithm:

Bagging (input training data+labels 7', number of models M)

for j =1to M do
Take a bootstrap sample T from T
Build a model using T".
Add the model to the set.

end for

return set of models

For a test point x, get a response from each model, and take a majority vote.

BOOTSTRAP
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Remember I said there were only two ML algorithms that I’d be willing to
bet my life on? SVMs were one. The other is called “Random Forests”, and if
I really had to just go with one... Random Forests are it. RF is an extension
of Bagging, but only for decision trees, hence the name—a forest of randomized
trees. The randomisation is generated via two mechanisms: a bootstrap, (as
in Bagging), and a random selection of features at each split point. The
algorithm is:

Random Forests (input training data+labels T, number of trees M)

for j =1to M do
Take a bootstrap sample T” from T'
Build a decision tree using 7’, but, at every split point:
- Choose a random fraction K of the remaining features,
- Pick the best feature (minimising cost) from that subset.
Add the tree to the set, without pruning
end for
return set of trees

For a test point x, get a response from each tree, and take a majority vote.

We see that the trees are effectively forced to not choose the best feature at
every split, but in a random way. The result is that the trees will all be a little
bit different, but still quite accurate. The majority vote ensures that the little
drop in accuracy for each tree doesn’t matter too much, and the differences
between them ensures that they don’t make simultaneous mistakes. The lack
of pruning ensures that we don’t force them to be too simple, otherwise, they
might become too similar to each other.

The final result is a very strong classifier. Random Forests are in fact the

MICROSOFT basis of how the popular Microsoft Kinect controller for Xbox works, when it
KINECT jdentifies where your body parts are for tracking.

Figure 9.1: Typical result of RF: the trees are diverse and accurate.
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9.3 Adaboost

Adaboost is the most well known of the Boosting family of algorithms. The
algorithm trains models sequentially, with a new model trained at each round.
At the end of each round, mis-classified examples are identified and have their
emphasis increased in a new training set which is then fed back into the start
of the next round, and a new model is trained. The idea is that subsequent
models should be able to compensate for errors made by earlier models.

Adaboost occupies somewhat of a special place in the history of ensem-
ble methods. Though the procedure seems heuristic, the algorithm is in fact
grounded in a rich learning-theoretic body of literature. Robert Schapire ad-
dressed a question on the nature of two complexity classes of learning prob-
lems. The two classes are strongly learnable and weakly learnable problems.
Schapire showed that these classes were equivalent; this had the corollary that
a weak model, performing only slightly better than random guessing, could
be “boosted” into an arbitrarily accurate strong model. The original Boosting
algorithm was a proof by construction of this equivalence, though had a num-
ber of impractical assumptions built-in. The Adaboost algorithm was the first
practical Boosting method. The procedure is shown below. Some similarities
with Bagging are evident; a key difference is that at each round ¢, Bagging has
a uniform distribution Dy, while Adaboost adapts a non-uniform distribution,
and while Bagging effectively trains models in parallel, Adaboost builds models
sequentially.

Adaboost (input training data+labels T, number of models M)

InPUt: Training set T = {(xlv yl)a (X27 y2)7 () (XNv yN)}v where Yi € {_17 +1}
Define a uniform distribution D1 (%) over elements of T'.

for j =1 to M do
Train a model h; using a dataset sampled from 7" using distribution D;.
Calculate €; = >, . 0(hj(x:) # yi)
If ¢; > 0.5 break

Set aj = %ln (712;'7

Update D;1(i) = D; (@) CXP(*Z?jyihj(xi))
where Z; is a normalization factor so that D;; is a valid distribution.
end for

For a new testing point (x’, '), we take a weighted majority vote, which can
. : M
be implemented as, H(z') = szgn( 2 im1 ozjhj(x’)>
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The ensemble is constructed by iteratively adding models. Each time a
model is learnt, it is checked to ensure it has at least €¢; < 0.5, that is, it has
performance better than random guessing on the data it was supplied with. If it
does not, either an alternative model is constructed, or the loop is terminated.
After each round, the distribution D; is updated to emphasize incorrectly clas-
sified examples. The update causes half the distribution mass of D;i; to be
over the examples incorrectly classified by the previous model. More precisely,
Ehj(xi#yi Dj1(i) = 0.5. Thus, if h; has an error rate of 10%, then examples
from that small 10% will be allocated 50% of the next model’s training ‘effort’,
while the remaining examples (those correctly classified) are underemphasized.
An equivalent (and simpler) writing of the distribution update scheme is to
multiply D, (¢) by 2(176 if hj(z;) is correct, and by 5 —j otherwise.

The updates cause the models to sequentially minimize an exponential bound
on the error rate. The training error rate on a data sample T" drawn from the
true distribution 7 obeys the bound,

Papr(vil() <0) < [] /00 —cs). (0.1)

This upper bound on the training error (though not the actual training error) is
guaranteed to decrease monotonically with M, given €; < 0.5.

In an attempt to further explain the performance of Boosting algorithms,
Schapire also developed bounds on the generalization error of voting systems,
in terms of the voting margin. Note that this is not the same as the geometric
margin, optimized by Support Vector Machines. The difference is that the
voting margin is defined using the one-norm ||w||; in the denominator, while the
geometric margin uses the two-norm ||w||2. While this is a subtle difference, it
is an important one, forming links between SVMs and Boosting algorithms.The
following bound holds with probability 1 — §,

Pryr (H(X) # 9) < Pyt (yH(x) < 0) + Oy Nde2 mo),  (9:2)

where the O notation hides constants and logarithmic terms, and d is the VC-
dimension of the model used. Roughly speaking, this states that the general-
ization error is less than or equal to the training error plus a term dependent
on the voting margin. The larger the minimum margin in the training data, the
lower the testing error.

The margin-based theory is only one explanation of the success of Boosting
algorithms. Mease & Wyner present a discussion of several questions on why
and how Adaboost succeeds. The subsequent 70 pages of discussion demonstrate
that the story is by no means simple. The conclusion is, while no single theory
can fully explain Boosting, each provides a different part of the still unfolding
story.
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9.4 What you should know by now

You should know why ensemble methods might be useful. You should know key
differences between the three algorithms described in this chapter, and be able
to fully explain the algorithm, including technical terms like “bootstrap”. Ide-
ally, you should have at least attempted to implement these — they may provide
good possibilities for your mini-projects.

To fully understand this chapter, it is highly likely that you will need to
do some extra reading, outside of just these notes. I can recommend work by
Robi Polikar, Tom Dietterich, and Ludmila Kuncheva, as great researchers in
the ensemble methods community.
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Feature Selection
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10.1 Background

Imagine you're trying to build a model to predict the weather tomorrow. I think
you’d agree that it would be pretty silly to provide it with a feature based on
the colour of my shoes. You know this because you know what is meant by the
concepts of colour and weather. But what does the HOXa9 gene in the human
genome mean? Is it useful in predicting a genetic predisposition to lung cancer?
Or does it control hair colour? We don’t know. This section is all about how to
figure out when a feature, such as the HOXa9, is useful for a learning algorithm,
and when it is irrelevant. More precisely, this section is about how to find the
subset of features that will help you, and how to avoid those that will only
hinder your learning algorithm.

Why?

Datasets with a large number of features are a significant challenge for Machine
Learning. Some of the most practically relevant and high-impact applications,
such as gene expression data, may easily have more than 10,000 features. Many
of these features may be completely irrelevant to the task at hand, or redundant
in the context of others. Learning in this situation raises important issues,
e.g. overfitting to irrelevant aspects of the data, and the computational burden
of processing many similar features that provide redundant information. It is
therefore an important research direction to automatically identify meaningful
smaller subsets of these variables, i.e. feature selection.

In the paragraph above, I pointed out some fairly obvious issues, for example—
in some problems, certain data will be completely irrelevant. Something not so
obvious is the following. The best set of features to give to a Support Vector Ma-
chine is not necessarily the best set to give to a K-nn classifier. Why? Simply
because they draw different types of boundaries, and allow different degrees of
flexibility when you change their parameters. The same applies to all learning
algorithms. A set of features should ideally be chosen specifically for the model;
I say ideally because this will not always be possible, due to the computational
burden of finding the right subset of size 10 (for example) from a 1,000,000
feature dataset! We must remember that even with the tennis data, when we
had just d = 4 features, there are 2¢ = 2% = 16 possible feature sets! With a
few thousand features, the number of possible combinations is more than the
age of the universe!
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10.2 The ‘Wrapper’ Method

With d = 4 features, there are 2¢ = 16 possible feature sets that we could give
to our model to learn from. This is visualised below, showing the 16 possible
feature set choices laid out as a search space.

Figure 10.1: Visualising the search space when we have just 4 features.

The task is to find the right set of features that will give lowest test error
with the model we have chosen, which we could say for example is an SVM, or
a logistic regression, whatever you like. The challenge is therefore a combinato-
rial optimisation, finding the right point in a binary search space. The wrapper
method for feature selection is the most obvious, and is simply as follows.

Wrapper Method for Feature Selection
1. Start with an initial guess for a good set of features
2. Train and test a model (maybe via cross validation)
3. If your test error is deemed good enough, STOP
4. otherwise, choose a new set of features, and go to line 2.

This is called a ‘wrapper’ for obvious reasons — the search procedure is
simply ‘wrapped’ around a model that is trained/tested at step 2. The search
procedure itself can take on any form we wish. We could use a greedy search
algorithm, or just a genetic algorithm search, simulated annealing, or branch and
bound algorithms, or many, many others.

The simplest is called a Wrapper Forward Selection, as we add features FORWARD
greedily and sequentially, i.e. “moving forward”. At each step, we see how SELECTION
evaluate our model (via cross validation) with the current features, plus each



BACKWARD
ELIMINATION
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of the remaining ones. We then find which of the remaining ones improves our
model the most, and add it permanently to our set. At the next step, we repeat
this, looking at whatever features remain.

An alternative would be the reverse process, starting with all features, se-
quentially discarding them. There, we evaluate our model with the current set,
but with one feature removed. Then we sequentially evaluate it with each fea-
ture in turn removed, and discard the one that ‘damages’ performance the least.
This is called Backward Elimination.

Clearly, both of these algorithms are suboptimal—they are not guaranteed
to find the optimal subset. Remember of course that finding the optimal subset
is a HUGE search problem, and in practice, these two algorithms do perform
very well. An alternative, that has been found to find even better subsets, is
Stepwise (or “Floating”) Selection, where we move two steps forward, then
one backward, then two more forward, etc. The number of steps clearly is an-
other parameter of the algorithm that needs to be tuned.

Despite these search techniques performing very well in practice, they are
HUGELY computationally expensive. At every single step, we need to run
the entire learning algorithm over again with a new feature subset. Another
disadvantage is that, as mentioned before, a subset chosen for an SVM will not
necessarily work well for a KNN or any other algorithm. A Wrapper selection
is clearly specific to a learning algorithm (whichever one it is wrapped around),
so feature subsets cannot be reused again later.

A question is therefore, how can we select good subsets, (1) while avoiding
running our learning algorithm at every step?, and (2) that will be generically
useful across several learning algorithms? The answer to this is filter methods.
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10.3 Filter Methods

Let’s say we were trying to predict someone’s Biology exam grade from vari-
ous possible indicators. I will provide you with their Chemistry grade, History
grade, Biology Mock exam grade, and Height. These are shown in the figures be-
low, plotted against their actual Biology exam grade. Which indicator (feature)
would you pick?

Figure 10.2: For a class full of 200 students, these plots show the performance
on the Biology exam (y-axis), plotted against various indicators of exam perfor-
mance. Top left: Chemistry exam. Top right: History exam. Bottom left: Mock
Biology exam. Bottom right: Height in centimetres

This is again an example of where a human judgement can easily pick out the
information we need, you would pick the bottom left feature, the mock exam.
However, remember we are trying to get a computer program that will automate
all of this. How can we measure the usefulness of the indicators above? We can
measure Pearson’s correlation coefficient of each plot.

\/Zz (i — 2) \/Zz (i — 9)?  std(z)std(y)

St (i —2)(: — 9) cov(z,y) (10.1)
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Here, the z; are all the values of the chemistry grades (for example), and
y; is the biology grades. The correlation coefficient is the covariance of the two
variables, divided by the product of their standard deviations. The denomina-
tor serves to normalise the value between -1 and +1, and overall the r value
summarises the degree of linear correlation between two variables. An impor-
tant point to note is that both strong positive and strong negative correlation
are useful. This may seem quite strange, but it is common to have negative
correlations in nature—for example if we plotted the biology grade against the
number of hours of TV watched each week, the more hours of TV, the lower
your grade!

In Python you can get this from NumPy with the function r =
np.corrcoef (x,y). Calling this returns a 2x2 matriz. Look at some
online help to understand more what the entries mean.

Ranking Features

From the examinations example above, if you had to rank the indicators in
terms of how useful they would be, you might say the order was: biology mock
exam, then chemistry, then history, then height. The height is the least useful
feature. The same principle can be applied by our learning algorithms to select
features. We rank the features in order of the absolute! value of the correlation
coefficient.

Below we see an example of this. We are using the heart dataset. Here for
simplicity, we apply a K nearest neighbour with £k = 1. We use the features
in the order they appear in the file, at each step evaluating a knn classifier.
The first knn uses feature 1, the second uses features 1 and 2, the third knn
uses features 1, 2, and 3, and so on. This is on the left of the figure below. In
contrast to this we can rank the features, by their |r| value:. We get the ranking:
13,12,8,3,11,2,10,9,7,4, 5.

The best performance on the left is with features 10 features. The best
performance on the right is with 7 features (and 5 is very close too). We have
achieved a lower classification error, with less features (so less computational
cost). So we improve on both performance and time/space complexity!

The interesting point here is that we did not use the KNN to select
the features. We selected them purely on their intrinsic relatedness to the
target label. These features could now be equally used with a SVM, or any
other algorithm.

Disadvantage of Ranking by Correlation Coefficient

Pearson’s Correlation Coefficient measures linear correlation. As such it cannot
detect nonlinear patterns. In the example scatterplots below, there are clearly
observable patterns and relationships between the variables (to the human eye),

ISelf-test: why do we use the absolute value, not the raw value?
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Figure 10.3: LEFT: Using features in the order they appear in the file. At each
step evaluated a KNN with k = 1. RIGHT: Using the top features ranked in
order of how strongly correlated they are with the label.

but the r value comes out as 0.0. Therefore features that could be relevant
might be ranked very low.

1.0 0.8 0.4 0.0 ~-0.4 0.8 1.0
1.0 1.0 1.0 0.0 1.0 1.0 1.0

Figure 10.4: Examples of r values for different correlation patterns

Ranking Features by how much “Information” they contain

In the material on Decision Trees lecture, we saw how to quantify what we could
gain in terms of predicting the target label, by examining each feature. That is,
what is the reduction in uncertainty (entropy) of the label Y, when we examine
feature X7 The information gain quantifies this for us.

I(X:Y) = H(®Y)-HY|X) (10.2)

Another name for the information gain is the Mutual Information between X
and Y.
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When we were measuring the information gain of each feature to decide
which we should split the data on, we were really measuring the mutual infor-
mation between the feature and the target label. This principle can be applied
in general-—we can measure the mutual information of each feature with the
label, and rank the features by this, instead of the linear correlation coefficient.

In Python you can get this from the skLearn toolkit
sklearn.metrics.mutual_info_score(x,y).
Calling this returns a real valued number, the mutual information.

Major advantage : detects nonlinearities. The MI does not assume any
underlying distribution of the data, it can detect arbitrary patterns in the data.

Major disadvantage: May choose redundant features.
Including very similar features (those that provide almost identical information)
can be detrimental to a learning algorithm.

We should ideally choose complementary features. This disadvantage is also
shared by Pearson’s correlation coefficient. In fact it is a problem for
most feature selection techniques. Advanced techniques do exist to tackle this—
see Fleuret’s paper in the conclusion, but this is outside the scope of this course.
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10.4 Optional: Information Theory

Mutual Information comes from the field of Information Theory, which has its
own set of rules for manipulating expresssions. This allows us to rewrite the MI
in several ways:

I(X;Y) = H(Y)-H(Y|X)
= H(X)-H(X[Y)
= H(X)+H(Y)- HXY)

= 303 playlog (L) (103)

s e p(x)p(y)

Note that the first two demonstrate the MI measure is symmetric. The final
way is the Kullback-Leibler divergence between the joint distribution of the vari-
ables, and the product of the marginal distributions. The more similar X and
Y, the larger this value. It takes on the value zero when p(z,y) = p(x)p(y),
i,e. X and Y are independent. It is maximal when X = Y. In general,
0<I(X;Y)<min(H(X),H(Y)).

For further reading, consult the links provided on the course website, in partic-
ular take note of the following:

e An Introduction to Variable and Feature Selection,
Guyon & Elisseeff, Journal of Machine Learning Research, vol 3, 2003.

e Fast Binary Feature Selection with Conditional Mutual Information,
F. Fleuret, Journal of Machine Learning Research, vol 5, 2004.

e Many videos on www.Videolectures.net

10.5 What you should know by now

You should know why feature selection might be necessary - stating some poten-
tial advantages. You should know the difference between wrappers and filters,
be able to give at least one example of each, advantages/disadvantages, and
understand the search space complexity of using each approach. You should
know how mutual information plays a role in feature selection, and it’s poten-
tial advantages/disadvantages.
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Chapter 11

Conclusions

Well, that’s it. You are now armed with the powerful basic tools and techniques
to apply machine learning algorithms to problems you might encounter. But
remember, with great power comes great responsibility — many naive people you
encounter out in the world will think ML is basically black magic. It’s now your
responsibility to educate them.

We just covered the basics of supervised learning, There are many many variants,
just two examples are:

Semi-supervised Learning : Imagine being provided with a training dataset
of 1000 examples, but 500 of the labels are missing. So you have 500 la-
belled examples, and 500 unlabelled. The challenge here is how to make use
of both resources to trained a good model, such that when it is deployed
for real in the world, and tested on new data, it will outperform a model
that was trained just using the labeled data.

Online learning : Instead of having the entire training set in memory, what if
you were fed a single example at each step, and had to make a prediction?
After you predict, you find out the correct label, but not until then. Once
you have the label, you can of course update your model, but then you
are forced to discard the example and label. The challenge here is that
you have to learn continuously, and can never see the previous data. This
sort of scenario comes up when there is large amount of data that cannot
possibly be stored in memory — the ‘big data’ scenario.

You may like to do further reading on advanced topics such as these in order
to do your projects, or even your dissertations next summer. In the subject of
Machine Learning right now, there is significant scope for exploring new ideas,
and you are encouraged to do so.
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Appendix A

What is true understanding?

You will encounter lots of difficult topics during the next year. It’s easy to
convince yourself that you understand something, when really you don’t. Here
are some tips to figure out whether you REALLY understand something. These
were originally printed in the book “How to think like a Mathematician”, but
apply equally for Computer Scientists.

You truly understand the definition of a concept if you...

can state it precisely in at least 2 different ways,

can state it in your own words, not from the textbook,

can give concrete examples of it, including trivial and non-trivial examples,
can give non-examples of the definition,

can recognize it in different and unfamiliar situations,

know situations in which it can be used,

know precisely why it can be used in those situations,

know why this particular definition is necessary,

know similar definitions of the word, and the differences between them

You truly understand a major topic if you...

can see how it all fits together,

can encapsulate it in a single sentence,

can give a concrete example which exhibits many features of the theory,
can see connections/similarities/differences between this topic and others,
can move effortlessly between intuition and technical details in an argument
know why it is interesting and useful,

know what is the bare minimum needed to make the theory work,

know which ideas get used again and again in the theory,

can explain it without notes,

can explain it to non-specialists (my favourite test subject is my mum)

So, next time you think you truly understand something, see how many of the
above you can do....
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Appendix B

Visualising Bayes Theorem

In this appendix we're going to see a completely different explanation of prob-
abilities and Bayes’ Theorem. If you understand Bayes already, you can skip
this section. I have just included it to provide another way of thinking, since
everyone is different. The text in this section is credited to Oscar Bonilla.

One of the easiest ways to understand probabilities is to think of them in
terms of Venn Diagrams. You basically have a Universe with all the possible
outcomes (of an experiment for instance), and you are interested in some subset
of them, namely some event. Say we are studying cancer, so we observe people
and see whether they have cancer or not. If we take as our Universe all people
participating in our study, then there are two possible outcomes for any partic-
ular individual, either he has cancer or not. We can then split our universe in
two events: the event ”people with cancer” (designated as A), and “people with
no cancer” (or —A). We could build a diagram like this:

Universe

So what is the probability that a randomly chosen person has cancer? It
is just the number of elements in A divided by the number of elements of U
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(the Universe). We denote the number of elements of A as |A|, and call it the
cardinality of A. Furthermore, define the probability of A, P(A), as

_ Al

P(A) = 0]

(B.1)

Since A can have at most the same number of elements as U, the probability
P(A) can be at most 1.0. Good so far? Okay, let’s add another event. Let’s say
there is a new screening test that is supposed to measure something. That test
will be ”positive” for some people, and "negative” for some other people. If we
take the event B to mean ”people for which the test is positive”. We can create
another diagram:

Unwerse

So what is the probability that the test will be ”positive” for a randomly
selected person? It would be the number of elements of B (the cardinality of B,
or |B|) divided by the number of elements of U, we call this P(B), the probability
of event B occurring,.

_ Bl

U]

Note that so far, we have treated the two events in isolation. What happens if
we put them together?

P(B) (B.2)
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We can compute the probability of both events occurring (AB is shorthand for

AN B) in the same way.

|AB|
U]

But this is where it starts to get interesting. What can we read from the
diagram above?

We are dealing with an entire Universe (all people), the event A (people
with cancer), and the event B (people for whom the test is positive). There is
also an overlap now, namely the event AB which we can read as ”people with
cancer and with a positive test result”. There is also the event B — AB or
”people without cancer and with a positive test result”, and the event A — AB
or "people with cancer and with a negative test result”.

Now, the question we’d like answered is ”given that the test is positive for
a randomly selected individual, what is the probability that said individual has
cancer?”. In terms of our Venn diagram, that translates to ”given that we are in
region B, what is the probability that we are in region AB?” or stated another
way ”if we make region B our new Universe, what is the probability of A?”.
The notation for this is P(A|B) and it is read ”the probability of A given B”.

P(AB) = (B.3)

So what is it? Well, it should be

P(A|B) = 'ﬁf" (B.4)

And if we divide both the numerator and the denominator by |U]

1AB|
P(AIB) = <5 (B.5)

we can rewrite it using the previously derived equations as

P(AB)
P(B)

P(A|B) = (B.6)

What we’ve effectively done is change the Universe from U (all people), to B
(people for whom the test is positive), but we are still dealing with probabilities
defined in U.
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Now let’s ask the converse question ”given that a randomly selected indi-
vidual has cancer (event A), what is the probability that the test is positive for
that individual (event AB)?”. Well, that it is just:

P(AB)
P(A)

P(B|A) = (B.7)

Now we have everything we need to derive Bayes’ theorem, putting those
two equations together we get

P(A|B)P(B) = P(B|A)P(A) (B.8)

which is to say P(AB) is the same whether you're looking at it from the
point of view of A orB, and finally, we have Bayes rule:

P(BJA)P(A)

P(AIB) = =5

(B.9)

Which is Bayes’ theorem.
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Example

Take the following example : 1% of women at age forty who participate in rou-
tine screening have breast cancer. 80% of women with breast cancer will get
positive mammograms. 9.6% of women without breast cancer will also get pos-
itive mammograms. A woman in this age group had a positive mammography
in a routine screening. What is the probability that she actually has breast
cancer? First of all, let’s consider the women with cancer:

Now add the women with positive mammograms, note that we need to cover
80% of the area of event A and 9.6% of the area outside of event A.

It is clear from the diagram that if we restrict our universe to B (women
with positive mammograms), only a small percentage actually have cancer. Ac-
cording to the article, most doctors guessed that the answer to the question was
around 80%, which is clearly impossible looking at the diagram!

Note that the efficacy of the test is given from the context of A, 780% of
women with breast cancer will get positive mamograms”. This can be inter-
preted as "restricting the universe to just A, what is the probability of B?” or
in other words P(B|A).
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Even without an exact Venn diagram, visualizing the diagram can help us apply
Bayes’ theorem:

e 1% of women in the group have breast cancer ... P(4) = 0.01

e 80% of those women get a positive mammogram, and 9.6% of the women
without breast cancer get a positive mammogram too ... P(B) = 0.8P(A)+
0.096(1 — P(A)) = 0.008 + 0.09504 = 0.10304

e we can get P(B—A) straight from the problem statement, remember 80%
of women with breast cancer get a positive mammogram ... P(B|A4) = 0.8

Now let’s plug those values into Bayes’ theorem

0.8 x 0.01
P(AIB) = = 0304

which is 0.0776 or about a 7.8% chance of actually having breast cancer
given a positive mammogram.

(B.10)



